Dynamic-to-static switch of hydrogen bonds induces a metal–insulator transition in an organic–inorganic superlattice

Pimentel, G. C. & McClellan, A. L. Hydrogen bonding. Annu. Rev. Phys. Chem. 22, 347–385 (1971).Article 
CAS 

Google Scholar 
Kollman, P. A. & Allen, L. C. Theory of the hydrogen bond. Chem. Rev. 72, 283–303 (1972).Article 
CAS 

Google Scholar 
Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).Article 
CAS 

Google Scholar 
Buemi, G. in Hydrogen Bonding—New Insights (ed. Grabowski, S. J.) 51–107 (Springer, 2006).Aakeröy, C. B. & Seddon, K. R. The hydrogen bond and crystal engineering. Chem. Soc. Rev. 22, 397–407 (1993).Article 

Google Scholar 
Jeffrey, G. A. & Saenger, W. Hydrogen Bonding in Biological Structures (Springer, 1991).Doster, W. The dynamical transition of proteins, concepts and misconceptions. Eur. Biophys. J. 37, 591–602 (2008).Article 
CAS 
PubMed 

Google Scholar 
Dahl, P. J. et al. A 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks. Sci. Adv. 8, eabm7193 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Portfield, W. W. (ed.) in Inorganic Chemistry 2nd edn, 885–893 (Academic, 1993).Mott, N. F. Metal–insulator transition. Rev. Mod. Phys. 40, 677–683 (1968).Article 
CAS 

Google Scholar 
Yang, Z., Ko, C. & Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011).Article 
CAS 

Google Scholar 
Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).Article 
CAS 

Google Scholar 
Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997).Article 
CAS 

Google Scholar 
Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).Article 
CAS 
PubMed 

Google Scholar 
Liang, Y. G. et al. Tuning the hysteresis of a metal-insulator transition via lattice compatibility. Nat. Commun. 11, 3539 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tian, N. et al. Dimensionality-driven metal to Mott insulator transition in two-dimensional 1T-TaSe2. Natl Sci. Rev. 11, nwad144 (2024).Article 
CAS 

Google Scholar 
Zhang, W. et al. Role of vacancies in metal–insulator transitions of crystalline phase-change materials. Nat. Mater. 11, 952–956 (2012).Article 
CAS 
PubMed 

Google Scholar 
Chu, C. W., Harper, J. M. E., Geballe, T. H. & Greene, R. L. Pressure dependence of the metal-insulator transition in tetrathiofulvalinium tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. Lett. 31, 1491–1494 (1973).Article 
CAS 

Google Scholar 
Lee, S.-H., Goh, J. S. & Cho, D. Origin of the insulating phase and first-order metal-insulator transition in 1T-TaS2. Phys. Rev. Lett. 122, 106404 (2019).Article 
CAS 
PubMed 

Google Scholar 
Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017).Article 
CAS 
PubMed 

Google Scholar 
Li, L. et al. Manipulating the insulator–metal transition through tip-induced hydrogenation. Nat. Mater. 21, 1246–1251 (2022).Article 
CAS 
PubMed 

Google Scholar 
Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Ueda, A. et al. Hydrogen-bond-dynamics-based switching of conductivity and magnetism: a phase transition caused by deuterium and electron transfer in a hydrogen-bonded purely organic conductor crystal. J. Am. Chem. Soc. 136, 12184–12192 (2014).Article 
CAS 
PubMed 

Google Scholar 
Isono, T. et al. Hydrogen bond-promoted metallic state in a purely organic single-component conductor under pressure. Nat. Commun. 4, 1344 (2013).Article 
PubMed 

Google Scholar 
Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).Article 
CAS 

Google Scholar 
Passarelli, J. V. et al. Tunable exciton binding energy in 2D hybrid layered perovskites through donor–acceptor interactions within the organic layer. Nat. Chem. 12, 672–682 (2020).Article 
CAS 
PubMed 

Google Scholar 
Jin, S. et al. High-Tc superconducting phases in organic molecular intercalated iron selenides: synthesis and crystal structures. Chem. Commun. 53, 9729–9732 (2017).Article 
CAS 

Google Scholar 
Zhang, H. et al. Enhancement of superconductivity in organic-inorganic hybrid topological materials. Sci. Bull. 65, 188–193 (2020).Article 
CAS 

Google Scholar 
Coronado, E. et al. Coexistence of superconductivity and magnetism by chemical design. Nat. Chem. 2, 1031–1036 (2010).Article 
CAS 
PubMed 

Google Scholar 
Wan, C. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015).Article 
CAS 
PubMed 

Google Scholar 
Wang, N. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced Curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 141, 17166–17173 (2019).Article 
CAS 
PubMed 

Google Scholar 
Ying, T. P. et al. Observation of superconductivity at 30∼46 K in AxFe2Se2(A = Li, Na, Ba, Sr, Ca, Yb and Eu). Sci. Rep. 2, 426 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ying, T. et al. Superconducting phases in potassium-intercalated iron selenides. J. Am. Chem. Soc. 135, 2951–2954 (2013).Article 
CAS 
PubMed 

Google Scholar 
Sun, R. et al. Intercalating anions between terminated anion layers: unusual ionic S–Se bonds and hole-doping induced superconductivity in S0.24(NH3)0.26Fe2Se2. J. Am. Chem. Soc. 141, 13849–13857 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fan, X. et al. Nematicity and superconductivity in orthorhombic superconductor Na0.35(C3N2H10)0.426Fe2Se2. Phys. Rev. Mater. 2, 114802 (2018).Article 
CAS 

Google Scholar 
Kobayashi, M. & Tanaka, H. The reversibility and first-order nature of liquid–liquid transition in a molecular liquid. Nat. Commun. 7, 13438 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Luo, J.-B., Wei, J.-H., Zhang, Z.-Z., He, Z.-L. & Kuang, D.-B. A melt-quenched luminescent glass of an organic–inorganic manganese halide as a large-area scintillator for radiation detection. Angew. Chem. Int. Ed. 62, e202216504 (2023).Article 
CAS 

Google Scholar 
Benoit, M., Marx, D. & Parrinello, M. Tunnelling and zero-point motion in high-pressure ice. Nature 392, 258–261 (1998).Article 
CAS 

Google Scholar 
Goncharov, A. F. et al. Dynamic ionization of water under extreme conditions. Phys. Rev. Lett. 94, 125508 (2005).Article 
PubMed 

Google Scholar 
Ye, Q.-J., Zhuang, L. & Li, X.-Z. Dynamic nature of high-pressure ice VII. Phys. Rev. Lett. 126, 185501 (2021).Article 
CAS 
PubMed 

Google Scholar 
Hedges, L. O., Jack, R. L., Garrahan, J. P. & Chandler, D. Dynamic order-disorder in atomistic models of structural glass formers. Science 323, 1309–1313 (2009).Article 
CAS 
PubMed 

Google Scholar 
Hernandez, J.-A. & Caracas, R. Superionic–superionic phase transitions in body-centered cubic H2O-ice. Phys. Rev. Lett. 117, 135503 (2016).Article 
PubMed 

Google Scholar 
Reinhardt, A. et al. Thermodynamics of high-pressure ice phases explored with atomistic simulations. Nat. Commun. 13, 4707 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tayran, C. & Çakmak, M. Charge density wave in a SnSe2 layer on and the effect of surface hydrogenation. Phys. Chem. Chem. Phys. 24, 6820–6827 (2022).Article 
CAS 
PubMed 

Google Scholar 
Smith, A. J., Meek, P. E. & Liang, W. Y. Raman scattering studies of SnS2 and SnSe2. J. Phys. C Solid State Phys. 10, 1321 (1977).Article 
CAS 

Google Scholar 
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).Article 

Google Scholar 
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).Article 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 
CAS 
PubMed 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).Article 
CAS 

Google Scholar 
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).Article 
PubMed 

Google Scholar 
Porezag, D. & Pederson, M. R. Infrared intensities and Raman-scattering activities within density-functional theory. Phys. Rev. B 54, 7830–7836 (1996).Article 
CAS 

Google Scholar 
Grimme, S., Bannwarth, C. & Shushkov, P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 13, 1989–2009 (2017).Article 
CAS 
PubMed 

Google Scholar 
Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package – Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).Article 
PubMed 

Google Scholar 
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles