Selective excitation of vibrations in a single molecule

Zewail, A. H. Laser femtochemistry. Science 242, 1645–1653 (1988).ADS 
CAS 
PubMed 

Google Scholar 
Zewail, A. H. Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel lecture). Angew. Chem. Int. Ed. 39, 2587–2631 (2000).
Google Scholar 
Olaya-Castro, A. & Scholes, G. D. Energy transfer from Forster-Dexter theory to quantum coherent light-harvesting. Int. Rev. Phys. Chem. 30, 49–77 (2011).CAS 

Google Scholar 
Falke, S. M. et al. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344, 1001–1005 (2014).ADS 
CAS 
PubMed 

Google Scholar 
Rafiq, S., Weingartz, N. P., Kromer, S., Castellano, F. N. & Chen, L. X. Spin-vibronic coherence drives singlet-triplet conversion. Nature 620, 776–781 (2023).ADS 
CAS 

Google Scholar 
Killelea, D. R., Campbell, V. L., Shuman, N. S. & Utz, A. L. Bond-selective control of a heterogeneously catalyzed reaction. Science 319, 790–793 (2008).ADS 
CAS 
PubMed 

Google Scholar 
Liu, K. P. Vibrational control of bimolecular reactions with methane by mode, bond, and stereo selectivity. Annu. Rev. Phys. Chem. 67, 91–111 (2016).ADS 
CAS 
PubMed 

Google Scholar 
Chadwick, H. & Beck, R. D. Quantum state-resolved studies of chemisorption reactions. Annu. Rev. Phys. Chem. 68, 39–61 (2017).ADS 
CAS 
PubMed 

Google Scholar 
Ho, W. Single-molecule chemistry. J. Chem. Phys. 117, 11033–11061 (2002).ADS 
CAS 

Google Scholar 
Zrimsek, A. B. et al. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 117, 7583–7613 (2017).CAS 
PubMed 

Google Scholar 
Chen, H. L. et al. Reactions in single-molecule junctions. Nat. Rev. Mater. 8, 165–185 (2023).ADS 

Google Scholar 
Stipe, B. C., Rezaei, M. A. & Ho, W. Coupling of vibrational excitation to the rotational motion of a single adsorbed molecule. Phys. Rev. Lett. 81, 1263–1266 (1998).ADS 
CAS 

Google Scholar 
Pascual, J. I., Lorente, N., Song, Z., Conrad, H. & Rust, H. P. Selectivity in vibrationally mediated single-molecule chemistry. Nature 423, 525–528 (2003).ADS 
CAS 
PubMed 

Google Scholar 
Chen, C. Y. et al. Dynamics of single-molecule dissociation by selective excitation of molecular phonons. Phys. Rev. Lett. 123, 246804 (2019).ADS 
CAS 
PubMed 

Google Scholar 
Stensitzki, T. et al. Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation. Nat. Chem. 10, 126–131 (2018).CAS 
PubMed 

Google Scholar 
Wang, H. M. et al. Bond-selective fluorescence imaging with single-molecule sensitivity. Nat. Photonics 17, 846–855 (2023).ADS 
PubMed 
PubMed Central 

Google Scholar 
Jones, R. R., Hooper, D. C., Zhang, L. W., Wolverson, D. & Valev, V. K. Raman techniques: fundamentals and frontiers. Nanoscale Res. Lett. 14, 1–34 (2019).
Google Scholar 
Xiong, H. Q. et al. Stimulated Raman excited fluorescence spectroscopy and imaging. Nat. Photonics 13, 412–417 (2019).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, X. J. G., Rang, M., Craig, I. M. & Raschke, M. B. Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. J. Phys. Chem. Lett. 3, 1836–1841 (2012).CAS 
PubMed 

Google Scholar 
Li, S. W., Chen, S. Y., Li, J., Wu, R. Q. & Ho, W. Joint space-time coherent vibration driven conformational transitions in a single molecule. Phys. Rev. Lett. 119, 176002 (2017).ADS 
PubMed 

Google Scholar 
Jaculbia, R. B. et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat. Nanotechnol. 15, 105–110 (2020).ADS 
CAS 
PubMed 

Google Scholar 
Cirera, B., Wolf, M. & Kumagai, T. Joule heating in single-molecule point contacts studied by tip-enhanced Raman spectroscopy. ACS Nano 16, 16443–16451 (2022).CAS 
PubMed 

Google Scholar 
Luo, Y. et al. Imaging and controlling coherent phonon wave packets in single graphene nanoribbons. Nat. Commun. 14, 3484 (2023).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiang, N. et al. Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. Nano Lett. 12, 5061–5067 (2012).ADS 
CAS 
PubMed 

Google Scholar 
Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).ADS 
CAS 
PubMed 

Google Scholar 
Zhang, Y. et al. Visually constructing the chemical structure of a single molecule by scanning Raman picoscopy. Natl. Sci. Rev. 6, 1169–1175 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019).ADS 
CAS 
PubMed 

Google Scholar 
Itoh, T. et al. Toward a new era of SERS and TERS at the nanometer scale: from fundamentals to innovative applications. Chem. Rev. 123, 1552–1634 (2023).CAS 
PubMed 
PubMed Central 

Google Scholar 
Hirakawa, A. Y. & Tsuboi, M. Molecular geometry in an excited electronic state and a preresonance Raman effect. Science 188, 359–361 (1975).ADS 
CAS 
PubMed 

Google Scholar 
Weitz, D. A., Garoff, S., Gersten, J. I. & Nitzan, A. The enhancement of Raman-scattering, resonance Raman-scattering, and fluorescence from molecules adsorbed on a rough silver surface. J. Chem. Phys. 78, 5324–5338 (1983).ADS 
CAS 

Google Scholar 
Asher, S. A. UV resonance Raman studies of molecular-structure and dynamics—applications in physical and biophysical chemistry. Annu. Rev. Phys. Chem. 39, 537–588 (1988).ADS 
CAS 
PubMed 

Google Scholar 
Nie, S. M. & Emery, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).CAS 
PubMed 

Google Scholar 
Myers, A. B. ‘Time-dependent’ resonance Raman theory. J. Raman Spectrosc. 28, 389–401 (1997).ADS 
CAS 

Google Scholar 
Efremov, E. V., Ariese, F. & Gooijer, C. Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential. Anal. Chim. Acta. 606, 119–134 (2008).CAS 
PubMed 

Google Scholar 
Sahoo, S. K., Umapathy, S. & Parker, A. W. Time-resolved resonance Raman spectroscopy: exploring reactive intermediates. Appl. Spectrosc. 65, 1087–1115 (2011).ADS 
PubMed 

Google Scholar 
Wächtler, M., Guthmuller, J., González, L. & Dietzek, B. Analysis and characterization of coordination compounds by resonance Raman spectroscopy. Coordin. Chem. Rev. 256, 1479–1508 (2012).
Google Scholar 
López-Peña, I., Leigh, B. S., Schlamadinger, D. E. & Kim, J. E. Insights into protein structure and dynamics by ultraviolet and visible resonance Raman spectroscopy. Biochemistry 54, 4770–4783 (2015).PubMed 

Google Scholar 
He, R., Tassi, N. G., Blanchet, G. B. & Pinczuk, A. Franck-Condon processes in pentacene monolayers revealed in resonance Raman scattering. Phys. Rev. B 83, 115452 (2011).ADS 

Google Scholar 
Marabotti, P. et al. Electron-phonon coupling and vibrational properties of size-selected linear carbon chains by resonance Raman scattering. Nat. Commun. 13, 5052 (2022).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Duque, J. G. et al. Violation of the Condon approximation in semiconducting carbon nanotubes. ACS Nano 5, 5233–5241 (2011).CAS 
PubMed 

Google Scholar 
Carvalho, B. R., Malard, L. M., Alves, J. M., Fantini, C. & Pimenta, M. A. Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering. Phys. Rev. Lett. 114, 136403 (2015).ADS 
MathSciNet 
PubMed 

Google Scholar 
McDonnell, L. P., Viner, J. J. S., Rivera, P., Xu, X. D. & Smith, D. C. Observation of intravalley phonon scattering of 2s excitons in MoSe2 and WSe2 monolayers. 2D Mater. 7, 045008 (2020).CAS 

Google Scholar 
Yang, B. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics 14, 693–699 (2020).ADS 
CAS 

Google Scholar 
Imada, H. et al. Single-molecule laser nanospectroscopy with micro-electron volt energy resolution. Science 373, 95–98 (2021).ADS 
CAS 
PubMed 

Google Scholar 
Imada, H., Imai-Imada, M., Ouyang, X. M., Muranaka, A. & Kim, Y. Anti-Kasha emissions of single molecules in a plasmonic nanocavity. J. Chem. Phys. 157, 104302 (2022).ADS 
CAS 
PubMed 

Google Scholar 
Dolezal, J., Sagwal, A., Ferreira, R. C. D. & Svec, M. Single-molecule time-resolved spectroscopy in a tunable STM nanocavity. Nano Lett. 24, 1629–1634 (2024).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roslawska, A. et al. Submolecular-scale control of phototautomerization. Nat. Nanotechnol. 19, 738–743 (2024).Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).ADS 
CAS 
PubMed 

Google Scholar 
Zhang, Y. et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 531, 623–627 (2016).ADS 
CAS 
PubMed 

Google Scholar 
Imada, H. et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538, 364–367 (2016).ADS 
CAS 
PubMed 

Google Scholar 
Kuhnke, K., Grosse, C., Merino, P. & Kern, K. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev. 117, 5174–5222 (2017).CAS 
PubMed 

Google Scholar 
Doppagne, B. et al. Electrofluorochromism at the single-molecule level. Science 361, 251–254 (2018).ADS 
CAS 
PubMed 

Google Scholar 
Luo, Y. et al. What can single-molecule Fano resonance tell? J. Chem. Phys. 154, 044309 (2021).ADS 
CAS 
PubMed 

Google Scholar 
Vasilev, K. et al. Internal Stark effect of single-molecule fluorescence. Nat. Commun. 13, 677 (2022).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Imada, H. et al. Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system. Phys. Rev. Lett. 119, 013901 (2017).ADS 
PubMed 

Google Scholar 
Doppagne, B. et al. Single-molecule tautomerization tracking through space-and time-resolved fluorescence spectroscopy. Nat. Nanotechnol. 15, 207–211 (2020).ADS 
CAS 
PubMed 

Google Scholar 
Chen, G. et al. Spin-triplet-mediated up-conversion and crossover behavior in single-molecule electroluminescence. Phys. Rev. Lett. 122, 177401 (2019).ADS 
CAS 
PubMed 

Google Scholar 
Néel, N., Lattelais, M., Bocquet, M. L. & Kröger, J. Depopulation of single-phthalocyanine molecular orbitals upon pyrrolic-hydrogen abstraction on graphene. ACS Nano 10, 2010–2016 (2016).PubMed 

Google Scholar 
Ziegler, L. D. On the difference between resonance Raman-scattering and resonance fluorescence in molecules: an experimental view. Acc. Chem. Res. 27, 1–8 (1994).CAS 

Google Scholar 
Wang, R. P. et al. Sub-nanometer resolved tip-enhanced Raman spectroscopy of a single molecule on the Si(111) substrate. J. Phys. Chem. C 126, 12121–12128 (2022).Zhang, C. et al. Fabrication of silver tips for scanning tunneling microscope induced luminescence. Rev. Sci. Instrum. 82, 083101 (2011).ADS 
CAS 
PubMed 

Google Scholar 
Frisch, M. E. et al. Gaussian 16, Revision C. 01 (Gaussian, Inc., 2016).Baiardi, A., Bloino, J. & Barone, V. A general time-dependent route to resonance-Raman spectroscopy including Franck-Condon, Herzberg-Teller and Duschinsky effects. J. Chem. Phys. 141, 114108 (2014).ADS 
PubMed 

Google Scholar 
Egidi, F., Boino, J., Cappell, C. & Barone, V. A robust and effective time-independent route to the calculation of resonance Raman spectra of large molecules in condensed phases with the inclusion of Duschinsky, Herzberg-Teller, anharmonic, and environmental effects. J. Chem. Theory Comput. 10, 346–363 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).ADS 
CAS 

Google Scholar 
Casida, M. E. Time-dependent density functional response theory for molecules. In Recent Advances in Density Functional Methods: Part I (ed. Chong, D. P.) 155–192 (World Scientific, 1995).

Hot Topics

Related Articles