Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy

Zhang, X. et al. Advances in liposomes loaded with photoresponse materials for cancer therapy. Biomed. Pharmacother. 174, 116586 (2024).Article 
CAS 
PubMed 

Google Scholar 
Yang, J. K., Kwon, H. & Kim, S. Recent advances in light-triggered cancer immunotherapy. J. Mater. Chem. B 12, 2650–2669 (2024).Article 
CAS 
PubMed 

Google Scholar 
Piyarathna, D. W. B. et al. ERR1 and PGC1α associated mitochondrial alterations correlate with pan-cancer disparity in African Americans. J. Clin. Investig. 129, 2351–2356 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Batheja, S., Gupta, S., Tejavath, K. K. & Gupta, U. TPP-based conjugates: potential targeting ligands. Drug Discov. Today 29, 103983 (2024).Article 
CAS 
PubMed 

Google Scholar 
Palominos, C. et al. Mitochondrial bioenergetics as a cell fate rheostat for responsive to Bcl-2 drugs: New cues for cancer chemotherapy. Cancer Lett. 594, 216965 (2024).Article 
CAS 
PubMed 

Google Scholar 
Qiu, Y. et al. Recent progress on near-infrared fluorescence heptamethine cyanine dye-based molecules and nanoparticles for tumor imaging and treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol 15, e1910 (2023).Article 
CAS 
PubMed 

Google Scholar 
Bilici, K., Cetin, S., Celikbas, E., Yagci Acar, H. & Kolemen, S. Recent Advances in Cyanine-Based Phototherapy Agents. Frontiers in Chemistry 9, https://doi.org/10.3389/fchem.2021.707876 (2021).Nödling, A. R. et al. Cyanine dye mediated mitochondrial targeting enhances the anti-cancer activity of small-molecule cargoes. Chem. Commun. 56, 4672–4675 (2020).Article 

Google Scholar 
Usama, S. M. & Burgess, K. Hows and Whys of Tumor-Seeking Dyes. Acc. Chem. Res. 54, 2121–2131 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kadkhoda, J., Tarighatnia, A., Nader, N. D. & Aghanejad, A. Targeting mitochondria in cancer therapy: Insight into photodynamic and photothermal therapies. Life Sci. 307, 120898 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zeng, S. et al. Activation of pyroptosis by specific organelle-targeting photodynamic therapy to amplify immunogenic cell death for anti-tumor immunotherapy. Bioact. Mater. 25, 580–593 (2023). Demonstration of the importance of mitochondrial PDT (primary tumor) in repression distant tumorCAS 
PubMed 

Google Scholar 
Guo, Z. et al. Cationic Spherical Polypeptides with Immunogenic Cell Death Inducing Activity for Oncolytic Immunotherapy. CCS Chemistry 0, 1-14Wang, S.-Z. et al. Mitochondria-Targeted Photodynamic and Mild-Temperature Photothermal Therapy for Realizing Enhanced Immunogenic Cancer Cell Death via Mitochondrial Stress. Adv. Funct. Mater. 33, 2303328 (2023). Demonstration of effectivity of dual mitochondrial PDT and PTT in activation of antitumor immune responseArticle 
CAS 

Google Scholar 
Chen, S., Liao, Z. & Xu, P. Mitochondrial control of innate immune responses. Front. Immunol. 14, https://doi.org/10.3389/fimmu.2023.1166214 (2023).Al Amir Dache, Z. & Thierry, A. R. Mitochondria-derived cell-to-cell communication. Cell Rep. 42, 112728 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wang, F., Zhang, D., Zhang, D., Li, P. & Gao, Y. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front Cell Dev. Biol. 9, 675465 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Bogenhagen, D. & Clayton, D. A. The Number of Mitochondrial Deoxyribonucleic Acid Genomes in Mouse L and Human HeLa Cells: QUANTITATIVE ISOLATION OF MITOCHONDRIAL DEOXYRIBONUCLEIC ACID. J. Biol. Chem. 249, 7991–7995 (1974).Article 
CAS 
PubMed 

Google Scholar 
Sadakierska-Chudy, A., Frankowska, M. & Filip, M. Mitoepigenetics and drug addiction. Pharmacol. Therapeutics 144, 226–233 (2014).Article 
CAS 

Google Scholar 
Fiorillo, M., Ózsvári, B., Sotgia, F. & Lisanti, M. P. High ATP Production Fuels Cancer Drug Resistance and Metastasis: Implications for Mitochondrial ATP Depletion Therapy. Front Oncol. 11, 740720 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Giaquinto, A. N. et al. Breast cancer statistics, 2022. CA: a cancer J. Clin. 72, 524–541 (2022).
Google Scholar 
Adlimoghaddam, A. & Albensi, B. C. The nuclear factor kappa B (NF-κB) signaling pathway is involved in ammonia-induced mitochondrial dysfunction. Mitochondrion 57, 63–75 (2021).Article 
CAS 
PubMed 

Google Scholar 
Choi, E. et al. Risk model–based lung cancer screening and racial and ethnic disparities in the US. JAMA Oncol. 9, 1640–1648 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Lawson, A. B. et al. Deprivation and segregation in ovarian cancer survival among African American women: A mediation analysis. Ann. Epidemiol. 86, 57–64 (2023).Article 
PubMed 

Google Scholar 
Williams, O. et al. Community Health workers United to Reduce Colorectal cancer and cardiovascular disease among people at Higher risk (CHURCH): study protocol for a randomized controlled trial. Trials 25, 283 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Institute, N. C. Cancer stat facts: prostate cancer, <http://seer.cancer.gov/statfacts/html/prost.html> (2024).Giaquinto, A. N. et al. Cancer statistics for African American/Black People 2022. CA: A Cancer J. Clin. 72, 202–229 (2022).
Google Scholar 
Piyarathna, D. W. B. et al. ERR1-and PGC1α-associated mitochondrial alterations correlate with pan-cancer disparity in African Americans. J. Clin. Investig. 129, 2351–2356 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Zou, Z., Chang, H., Li, H. & Wang, S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis 22, 1321–1335 (2017).Article 
CAS 
PubMed 

Google Scholar 
Passaniti, A., Kim, M. S., Polster, B. M. & Shapiro, P. Targeting mitochondrial metabolism for metastatic cancer therapy. Mol. Carcinog. 61, 827–838 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013).Article 
CAS 
PubMed 

Google Scholar 
Cheung, E. C. & Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 22, 280–297 (2022).Article 
CAS 
PubMed 

Google Scholar 
Szatrowski, T. P. & Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798 (1991).CAS 
PubMed 

Google Scholar 
Cocetta, V., Ragazzi, E. & Montopoli, M. Mitochondrial Involvement in Cisplatin Resistance. Int J Mol Sci 20, https://doi.org/10.3390/ijms20143384 (2019).Yang, H. et al. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 37, 266 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jia, D., Park, J. H., Jung, K. H., Levine, H. & Kaipparettu, B. A. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States. Cells 7, https://doi.org/10.3390/cells7030021 (2018).Ghosh, P., Vidal, C., Dey, S. & Zhang, L. Mitochondria Targeting as an Effective Strategy for Cancer Therapy. Int J Mol Sci 21, https://doi.org/10.3390/ijms21093363 (2020).Denisenko, T. V., Gorbunova, A. S. & Zhivotovsky, B. Mitochondrial Involvement in Migration, Invasion and Metastasis. Front Cell Dev. Biol. 7, 355 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Yang, R. & Rincon, M. Mitochondrial Stat3, the Need for Design Thinking. Int J. Biol. Sci. 12, 532–544 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mauro, C. et al. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat. Cell Biol. 13, 1272–1279 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Domínguez-Zorita, S. & Cuezva, J. M. The Mitochondrial ATP Synthase/IF1 Axis in Cancer Progression: Targets for Therapeutic Intervention. Cancers (Basel) 15, https://doi.org/10.3390/cancers15153775 (2023).Caino, M. C. & Altieri, D. C. Molecular Pathways: Mitochondrial Reprogramming in Tumor Progression and Therapy. Clin. Cancer Res. 22, 540–545 (2016).Article 
CAS 
PubMed 

Google Scholar 
Viale, A., Corti, D. & Draetta, G. F. Tumors and mitochondrial respiration: a neglected connection. Cancer Res. 75, 3685–3686 (2015).Article 
PubMed 

Google Scholar 
Okon, I. S. & Zou, M. H. Mitochondrial ROS and cancer drug resistance: Implications for therapy. Pharm. Res. 100, 170–174 (2015).Article 
CAS 

Google Scholar 
de Sá Junior, P. L. et al. The Roles of ROS in Cancer Heterogeneity and Therapy. Oxid. Med. Cell Longev. 2017, 2467940 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Che, M., Wang, R., Li, X., Wang, H. Y. & Zheng, X. F. S. Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov. Today 21, 143–149 (2016).Article 
CAS 
PubMed 

Google Scholar 
Bansal, A. & Simon, M. C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol. 217, 2291–2298 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gandin, V. & Fernandes, A. P. Metal- and Semimetal-Containing Inhibitors of Thioredoxin Reductase as Anticancer Agents. Molecules 20, 12732–12756 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ingle, J. & Basu, S. Mitochondria Targeted AIE Probes for Cancer Phototherapy. ACS Omega 8, 8925–8935 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shen, Z. et al. Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment. NPG Asia Mater. 13, 39 (2021).Article 
CAS 

Google Scholar 
Correia, J. H., Rodrigues, J. A., Pimenta, S., Dong, T. & Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 13. https://doi.org/10.3390/pharmaceutics13091332 (2021).Liao, S. et al. Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective. Front. Pharmacol. 12, https://doi.org/10.3389/fphar.2021.664123.Zhang, A. et al. Simultaneous luminescence in I, II and III biological windows (2021)realized by using the energy transfer of Yb3+→Er3+/Ho3+→Cr3+. Chem. Eng. J. 365, 400–404 (2019).Article 
CAS 

Google Scholar 
Ma, J. & Jiang, L. Photogeneration of singlet oxygen (1O2) and free radicals (Sen*-, O2*-) by tetra-brominated hypocrellin B derivative. Free Radic. Res. 35, 767–777 (2001).Article 
CAS 
PubMed 

Google Scholar 
Bilski, P., Motten, A. G., Bilska, M. & Chignell, C. F. The photooxidation of diethylhydroxylamine by rose bengal in micellar and nonmicellar aqueous solutions. Photochem Photobio. 58, 11–18 (1993).Article 
CAS 

Google Scholar 
Castano, A. P., Demidova, T. N. & Hamblin, M. R. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn. Ther. 1, 279–293 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kwiatkowski, S. et al. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 106, 1098–1107 (2018).Article 
PubMed 

Google Scholar 
Calixto, G. M., Bernegossi, J., de Freitas, L. M., Fontana, C. R. & Chorilli, M. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules 21, 342 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Ancély Ferreira dos, S. et al. Photodynamic therapy in cancer treatment – an update review. Photodyn. Ther. cancer Treat. – update Rev. 5, 25 (2019).
Google Scholar 
Slimen, I. B. et al. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J. Hyperth. 30, 513–523 (2014).Article 

Google Scholar 
Mujahid, A. et al. Mitochondrial Oxidative Damage in Chicken Skeletal Muscle Induced by Acute Heat Stress. J. Poult. Sci. 44, 439–445 (2007). Observed propagation of radial reaction in mitochondria via oxidation of mitochondrial lipidsArticle 
CAS 

Google Scholar 
Yi, M. et al. Manipulate tumor hypoxia for improved photodynamic therapy using nanomaterials. Eur. J. Med. Chem. 247, 115084 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhuang, J. et al. Efficient NIR-II Type-I AIE Photosensitizer for Mitochondria-Targeted Photodynamic Therapy through Synergistic Apoptosis-Ferroptosis. ACS Nano 17, 9110–9125 (2023).Article 
CAS 
PubMed 

Google Scholar 
Scholz, M., Petusseau, A. F., Gunn, J. R., Shane Chapman, M. & Pogue, B. W. Imaging of hypoxia, oxygen consumption and recovery in vivo during ALA-photodynamic therapy using delayed fluorescence of Protoporphyrin IX. Photodiagnosis Photodyn. Ther. 30, 101790 (2020).Article 
CAS 
PubMed 

Google Scholar 
Bříza, T. et al. Pentamethinium fluorescent probes: The impact of molecular structure on photophysical properties and subcellular localization. Dyes Pigments 107, 51–59 (2014).Article 

Google Scholar 
Kejík, Z. et al. Combination of quinoxaline with pentamethinium system: Mitochondrial staining and targeting. Bioorg. Chem. 141, 106816 (2023).Article 
PubMed 

Google Scholar 
Rimpelová, S. et al. Rational Design of Chemical Ligands for Selective Mitochondrial Targeting. Bioconjugate Chem. 24, 1445–1454 (2013).Article 

Google Scholar 
Krejcir, R. et al. Anticancer pentamethinium salt is a potent photosensitizer inducing mitochondrial disintegration and apoptosis upon red light illumination. J. Photochem Photobio. B 209, 111939 (2020).Article 
CAS 

Google Scholar 
Wang, R., Li, X. & Yoon, J. Organelle-Targeted Photosensitizers for Precision Photodynamic Therapy. ACS Appl Mater. Interfaces 13, 19543–19571 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kessel, D. & Evans, C. L. Promotion of Proapoptotic Signals by Lysosomal Photodamage: Mechanistic Aspects and Influence of Autophagy. Photochem Photobio. 92, 620–623 (2016).Article 
CAS 

Google Scholar 
Kessel, D. Photodynamic therapy: Promotion of efficacy by a sequential protocol. J. Porphyr. Phthalocyanines 20, 302–306 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, X. et al. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials 253, 120089 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Y. et al. Hemicyanine-Based Type I Photosensitizers for Antihypoxic Activatable Photodynamic Therapy. ACS Mater. Lett. 5, 3058–3067 (2023).Article 
CAS 

Google Scholar 
Wangngae, S. et al. Effect of morpholine and charge distribution of cyanine dyes on cell internalization and cytotoxicity. Sci. Rep. 12, 4173 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hu, Y. B., Dammer, E. B., Ren, R. J. & Wang, G. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl. Neurodegener. 4, 18 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Shi, C. et al. Reversing Multidrug Resistance by Inducing Mitochondrial Dysfunction for Enhanced Chemo-Photodynamic Therapy in Tumor. ACS Appl Mater. Interfaces 13, 45259–45268 (2021). Decrease in P-gp expression and increase paclitaxel efficiency via mitochondrial PDT (in vitro and in vivo)Article 
CAS 
PubMed 

Google Scholar 
Habash, R. W., Bansal, R., Krewski, D. & Alhafid, H. T. Thermal therapy, part 1: an introduction to thermal therapy. Crit. Rev. Biomed. Eng. 34, 459–489 (2006).Article 
PubMed 

Google Scholar 
Yun, C. W., Kim, H. J., Lim, J. H. & Lee, S. H. Heat shock proteins: agents of cancer development and therapeutic targets in anti-cancer therapy. Cells 9, 60 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Streicher, J. M. The role of heat shock proteins in regulating receptor signal transduction. Mol. Pharmacol. 95, 468–474 (2019).Article 
CAS 
PubMed 

Google Scholar 
Hu, C. et al. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm 3, e161 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ali, M. R., Ali, H. R., Rankin, C. R. & El-Sayed, M. A. Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy. Biomaterials 102, 1–8 (2016).Article 
CAS 
PubMed 

Google Scholar 
Chen, W.-H. et al. Overcoming the Heat Endurance of Tumor Cells by Interfering with the Anaerobic Glycolysis Metabolism for Improved Photothermal Therapy. ACS Nano 11, 1419–1431 (2017).Article 
CAS 
PubMed 

Google Scholar 
Tang, X. et al. Gold nanorods together with HSP inhibitor-VER-155008 micelles for colon cancer mild-temperature photothermal therapy. Acta Pharmaceutica Sin. B 8, 587–601 (2018).Article 

Google Scholar 
Liu, D. et al. Polydopamine-encapsulated Fe3O4 with an adsorbed HSP70 inhibitor for improved photothermal inactivation of bacteria. ACS Appl. Mater. Interfaces 8, 24455–24462 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z. et al. Laser‐triggered small interfering RNA releasing gold nanoshells against heat shock protein for sensitized photothermal therapy. Adv. Sci. 4, 1600327 (2017).Article 

Google Scholar 
Liu, H. J., Wang, M., Hu, X., Shi, S. & Xu, P. Enhanced photothermal therapy through the in situ activation of a temperature and redox dual‐sensitive nanoreservoir of triptolide. Small 16, 2003398 (2020).Article 
CAS 

Google Scholar 
Sun, T. et al. Enhanced efficacy of photothermal therapy by combining a semiconducting polymer with an inhibitor of a heat shock protein. Mater. Chem. Front. 3, 127–136 (2019).Article 
CAS 

Google Scholar 
Liu, D. et al. Thermoresponsive nanogel‐encapsulated PEDOT and HSP70 inhibitor for improving the depth of the photothermal therapeutic effect. Adv. Funct. Mater. 26, 4749–4759 (2016).Article 
CAS 

Google Scholar 
Wang, Y. et al. Cancer Cell-Mimicking Prussian Blue Nanoplatform for Synergistic Mild Photothermal/Chemotherapy via Heat Shock Protein Inhibition. ACS Appl. Mate. Interfaces 16, 20908–20919 (2024).Zhong, Y. et al. pH-responsive Ag2S nanodots loaded with heat shock protein 70 inhibitor for photoacoustic imaging-guided photothermal cancer therapy. Acta Biomaterialia 115, 358–370 (2020).Article 
CAS 
PubMed 

Google Scholar 
Iwata, K. et al. Tumour pO2 can be increased markedly by mild hyperthermia. The. Br. J. Cancer Suppl. 27, S217 (1996).CAS 
PubMed 
PubMed Central 

Google Scholar 
Vaupel, P. W. & Kelleher, D. K. Pathophysiological and vascular characteristics of tumours and their importance for hyperthermia: heterogeneity is the key issue. Int. J. Hyperth. 26, 211–223 (2010).Article 
CAS 

Google Scholar 
Sen, A. et al. Mild elevation of body temperature reduces tumor interstitial fluid pressure and hypoxia and enhances efficacy of radiotherapy in murine tumor models. Cancer Res. 71, 3872–3880 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yonezawa, M. et al. Hyperthermia induces apoptosis in malignant fibrous histiocytoma cells in vitro. Int. J. cancer 66, 347–351 (1996).Article 
CAS 
PubMed 

Google Scholar 
Piret, E. M. et al. Side effects and acceptability measures for thermal ablation as a treatment for cervical precancer in low-income and middle-income countries: a systematic review and meta-synthesis. Fam Med. Community Health 10, https://doi.org/10.1136/fmch-2021-001541 (2022).Overchuk, M., Weersink, R. A., Wilson, B. C. & Zheng, G. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS Nano 17, 7979–8003 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lange, N., Szlasa, W., Saczko, J. & Chwiłkowska, A. Potential of Cyanine Derived Dyes in Photodynamic Therapy. Pharmaceutics 13, https://doi.org/10.3390/pharmaceutics13060818 (2021).Yang, J., Griffin, A., Qiang, Z. & Ren, J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct. Target Ther. 7, 379 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Isidoro, A. et al. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis 26, 2095–2104 (2005).Article 
CAS 
PubMed 

Google Scholar 
Mishra, A., Behera, R. K., Behera, P. K., Mishra, B. K. & Behera, G. B. Cyanines during the 1990s:  A Review. Chem. Rev. 100, 1973–2012 (2000).Article 
CAS 
PubMed 

Google Scholar 
Shi, C., Wu, J. B. & Pan, D. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. J. Biomed. Opt. 21, 50901 (2016).Article 
PubMed 

Google Scholar 
Kejík, Z. et al. New method for recognition of sterol signalling molecules: methinium salts as receptors for sulphated steroids. Steroids 94, 15–20 (2015).Article 
PubMed 

Google Scholar 
Bříza, T. et al. Optical sensing of sulfate by polymethinium salt receptors: colorimetric sensor for heparin. Chem. Commun. 1901-1903. https://doi.org/10.1039/B718492A (2008).Briza, T. et al. Dimethinium Heteroaromatic Salts as Building Blocks for Dual-Fluorescence Intracellular Probes. Chemphotochem 1, 442–450 (2017).Article 
CAS 

Google Scholar 
Cooper, E. et al. The Use of Heptamethine Cyanine Dyes as Drug-Conjugate Systems in the Treatment of Primary and Metastatic Brain Tumors. Front Oncol. 11, 654921 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bříza, T. et al. Pentamethinium salts as ligands for cancer: Sulfated polysaccharide co-receptors as possible therapeutic target. Bioorg. Chem. 82, 74–85 (2019).Article 
PubMed 

Google Scholar 
Talianová, V. et al. New-Generation Heterocyclic Bis-Pentamethinium Salts as Potential Cytostatic Drugs with Dual IL-6R and Mitochondria-Targeting Activity. Pharmaceutics 14, https://doi.org/10.3390/pharmaceutics14081712 (2022).Bříza, T. et al. Striking antitumor activity of a methinium system with incorporated quinoxaline unit obtained by spontaneous cyclization. Chembiochem 16, 555–558 (2015).Article 
PubMed 

Google Scholar 
Ran, S., Downes, A. & Thorpe, P. E. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 62, 6132–6140 (2002).CAS 
PubMed 

Google Scholar 
Dereje, D. M., Pontremoli, C., Moran Plata, M. J., Visentin, S. & Barbero, N. Polymethine dyes for PDT: recent advances and perspectives to drive future applications. Photochem Photobio. Sci. 21, 397–419 (2022).Article 
CAS 

Google Scholar 
Chance, B. Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann. N. Y Acad. Sci. 838, 29–45 (1998).Article 
CAS 
PubMed 

Google Scholar 
Mahmut, Z. et al. Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules. Molecules 28, https://doi.org/10.3390/molecules28166085 (2023).Štacková, L. et al. Deciphering the Structure–Property Relations in Substituted Heptamethine Cyanines. J. Org. Chem. 85, 9776–9790 (2020).Article 
PubMed 

Google Scholar 
Niu, S. et al. Effect of indocyanine green near-infrared light imaging technique guided lymph node dissection on short-term clinical efficacy of minimally invasive radical gastric cancer surgery: a meta-analysis. Front Oncol. 13, 1257585 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Quan, B., Choi, K., Kim, Y. H., Kang, K. W. & Chung, D. S. Near infrared dye indocyanine green doped silica nanoparticles for biological imaging. Talanta 99, 387–393 (2012).Article 
CAS 
PubMed 

Google Scholar 
Alves, A. C., Ribeiro, D., Nunes, C. & Reis, S. Biophysics in cancer: The relevance of drug-membrane interaction studies. Biochimica et. Biophysica Acta (BBA) – Biomembranes 1858, 2231–2244 (2016).Article 
CAS 
PubMed 

Google Scholar 
Cottet-Rousselle, C., Ronot, X., Leverve, X. & Mayol, J.-F. Cytometric assessment of mitochondria using fluorescent probes. Cytom. Part A 79A, 405–425 (2011).Article 
CAS 

Google Scholar 
Perry, S. W., Norman, J. P., Barbieri, J., Brown, E. B. & Gelbard, H. A. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. BioTechniques 50, 98–115 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Begum, H. M. & Shen, K. Intracellular and microenvironmental regulation of mitochondrial membrane potential in cancer cells. WIREs Mechanisms Dis. 15, e1595 (2023).Article 
CAS 

Google Scholar 
Heerdt, B. G., Houston, M. A. & Augenlicht, L. H. The Intrinsic Mitochondrial Membrane Potential of Colonic Carcinoma Cells Is Linked to the Probability of Tumor Progression. Cancer Res. 65, 9861–9867 (2005).Article 
CAS 
PubMed 

Google Scholar 
Heerdt, B. G., Houston, M. A. & Augenlicht, L. H. Growth Properties of Colonic Tumor Cells Are a Function of the Intrinsic Mitochondrial Membrane Potential. Cancer Res. 66, 1591–1596 (2006).Article 
CAS 
PubMed 

Google Scholar 
Garcia Fernandez, M. I., Ceccarelli, D. & Muscatello, U. Use of the fluorescent dye 10-N-nonyl acridine orange in quantitative and location assays of cardiolipin: a study on different experimental models. Anal. Biochem. 328, 174–180 (2004).Article 
CAS 
PubMed 

Google Scholar 
Jacobson, J., Duchen, M. R. & Heales, S. J. Intracellular distribution of the fluorescent dye nonyl acridine orange responds to the mitochondrial membrane potential: implications for assays of cardiolipin and mitochondrial mass. J. Neurochem 82, 224–233 (2002).Article 
CAS 
PubMed 

Google Scholar 
Tang, Q. et al. Dynamin-related protein 1-mediated mitochondrial fission contributes to IR-783-induced apoptosis in human breast cancer cells. J. Cell. Mol. Med. 22, 4474–4485 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Borrelli, M. J., Rausch, C. M., Seaner, R. & Iliakis, G. Sensitization to hyperthermia by 3,3’-dipentyloxacarbocyanine iodide: a positive correlation with DNA damage and negative correlations with altered cell morphology, oxygen consumption inhibition, and reduced ATP levels. Int J. Hyperth. 7, 243–261 (1991).Article 
CAS 

Google Scholar 
Shinohara, Y., Nagamune, H. & Terada, H. The hydrophobic cationic cyanine dye inhibits oxidative phosphorylation by inhibiting ADP transport, not by electrophoretic transfer, into mitochondria. Biochem Biophys. Res Commun. 148, 1081–1086 (1987).Article 
CAS 
PubMed 

Google Scholar 
Fialova, J. L. et al. Pentamethinium salts suppress key metastatic processes by regulating mitochondrial function and inhibiting dihydroorotate dehydrogenase respiration. Biomed. Pharmacother. 154, 113582 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liu, H.-W. et al. A mitochondrial-targeted prodrug for NIR imaging guided and synergetic NIR photodynamic-chemo cancer therapy. Chem. Sci. 8, 7689–7695 (2017). Promising example of chimeric PDT agent with strong selectivity against cancer cells and tumorArticle 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thankarajan, E. et al. A novel, dual action chimera comprising DNA methylating agent and near-IR xanthene-cyanine photosensitizer for combined anticancer therapy. Photodiagnosis Photodyn. Ther. 37, 102722 (2022).Article 
CAS 
PubMed 

Google Scholar 
Yue, X. F. et al. The near-infrared dye IR-61 restores erectile function in a streptozotocin-induced diabetes model via mitochondrial protection. Asian J. Androl. 23, 249–258 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, J. et al. IR-61 Improves Voiding Function via Mitochondrial Protection in Diabetic Rats. Front. Pharmacol. 12, https://doi.org/10.3389/fphar.2021.608637 (2021).Rojo de la Vega, M., Chapman, E. & Zhang, D. D. NRF2 and the Hallmarks of Cancer. Cancer Cell 34, 21–43 (2018).Article 
CAS 
PubMed 

Google Scholar 
Esteras, N. & Abramov, A. Y. Nrf2 as a regulator of mitochondrial function: Energy metabolism and beyond. Free Radic. Biol. Med. 189, 136–153 (2022).Article 
CAS 
PubMed 

Google Scholar 
Buttari, B., Arese, M., Oberley-Deegan, R. E., Saso, L. & Chatterjee, A. NRF2: A crucial regulator for mitochondrial metabolic shift and prostate cancer progression. Front. Physiol. 13, https://doi.org/10.3389/fphys.2022.989793 (2022).Shan, Z., Fa, W. H., Tian, C. R., Yuan, C. S. & Jie, N. Mitophagy and mitochondrial dynamics in type 2 diabetes mellitus treatment. Aging (Albany NY) 14, 2902–2919 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhu, Y.-X. et al. Mitochondria-acting nanomicelles for destruction of cancer cells via excessive mitophagy/autophagy-driven lethal energy depletion and phototherapy. Biomaterials 232, 119668 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kurokawa, H. et al. High resolution imaging of intracellular oxygen concentration by phosphorescence lifetime. Sci. Rep. 5, 10657 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rubio, N., Fleury, S. P. & Redmond, R. W. Spatial and temporal dynamics of in vitro photodynamic cell killing: extracellular hydrogen peroxide mediates neighbouring cell death. Photochem Photobio. Sci. 8, 457–464 (2009).Article 
CAS 

Google Scholar 
Li, Y. H. et al. Mitochondrion, lysosome, and endoplasmic reticulum: Which is the best target for phototherapy? J. Control Release 351, 692–702 (2022).Article 
CAS 
PubMed 

Google Scholar 
MacDonald, I. J. et al. Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives. Photochem Photobio. 70, 789–797 (1999).CAS 

Google Scholar 
Walker, I. et al. A comparative analysis of phenothiazinium salts for the photosensitisation of murine fibrosarcoma (RIF-1) cells in vitro. Photochem Photobio. Sci. 3, 653–659 (2004).Article 
CAS 

Google Scholar 
Baldea, I. et al. Efficiency of photodynamic therapy on WM35 melanoma with synthetic porphyrins: Role of chemical structure, intracellular targeting and antioxidant defense. J. Photochem. Photobiol. B: Biol. 151, 142–152 (2015).Article 
CAS 

Google Scholar 
Zhao, H., Xing, D. & Chen, Q. New insights of mitochondria reactive oxygen species generation and cell apoptosis induced by low dose photodynamic therapy. Eur. J. Cancer 47, 2750–2761 (2011).Article 
CAS 
PubMed 

Google Scholar 
Cen, Y. et al. Drug induced mitochondria dysfunction to enhance photodynamic therapy of hypoxic tumors. J. Control Release 358, 654–666 (2023).Article 
CAS 
PubMed 

Google Scholar 
Theodossiou, T. A., Papakyriakou, A. & Hothersall, J. S. Molecular modeling and experimental evidence for hypericin as a substrate for mitochondrial complex III; mitochondrial photodamage as demonstrated using specific inhibitors. Free Radic. Biol. Med. 45, 1581–1590 (2008).Article 
CAS 
PubMed 

Google Scholar 
Lin, F., Bao, Y. W. & Wu, F. G. Improving the Phototherapeutic Efficiencies of Molecular and Nanoscale Materials by Targeting Mitochondria. Molecules 23, https://doi.org/10.3390/molecules23113016 (2018).Csordás, G. et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921 (2006).Article 
PubMed 
PubMed Central 

Google Scholar 
Jiang, H., Fu, H., Guo, Y., Hu, P. & Shi, J. Evoking tumor associated macrophages by mitochondria-targeted magnetothermal immunogenic cell death for cancer immunotherapy. Biomaterials 289, 121799 (2022).Article 
CAS 
PubMed 

Google Scholar 
Chou, W. et al. Photodynamic Therapy-Induced Anti-Tumor Immunity: Influence Factors and Synergistic Enhancement Strategies. Pharmaceutics 15, https://doi.org/10.3390/pharmaceutics15112617 (2023).Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).Article 
CAS 
PubMed 

Google Scholar 
Shimada, K. et al. Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome during Apoptosis. Immunity 36, 401–414 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136–140 (2010).Article 
CAS 
PubMed 

Google Scholar 
Yakes, F. M. & Van Houten, B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl Acad. Sci. 94, 514–519 (1997).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hu, P. et al. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials 141, 86–95 (2017).Article 
PubMed 

Google Scholar 
Chen, Y., Wei, X.-R., Sun, R., Xu, Y.-J. & Ge, J.-F. The application of azonia-cyanine dyes for nucleic acids imaging in mitochondria. Sens. Actuators B: Chem. 281, 499–506 (2019).Article 
CAS 

Google Scholar 
Schneider, A. et al. Single organelle analysis to characterize mitochondrial function and crosstalk during viral infection. Sci. Rep. 9, 8492 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Mahalingam, S. M., Ordaz, J. D. & Low, P. S. Targeting of a Photosensitizer to the Mitochondrion Enhances the Potency of Photodynamic Therapy. ACS Omega 3, 6066–6074 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lim, J. B., Huang, B. K., Deen, W. M. & Sikes, H. D. Analysis of the lifetime and spatial localization of hydrogen peroxide generated in the cytosol using a reduced kinetic model. Free Radic. Biol. Med. 89, 47–53 (2015).Article 
CAS 
PubMed 

Google Scholar 
Shahzidi, S. et al. Simultaneously targeting mitochondria and endoplasmic reticulum by photodynamic therapy induces apoptosis in human lymphoma cells. Photochem Photobio. Sci. 10, 1773–1782 (2011).Article 
CAS 

Google Scholar 
Radchenko, A. S. et al. Photoactivated biscarbocyanine dye with two conjugated chromophores: complexes with albumin, photochemical and phototoxic properties. Photochemical Photobiological Sci. 18, 2461–2468 (2019).Article 
CAS 

Google Scholar 
Kessel, D. & Reiners, J. J. Jr. Promotion of Proapoptotic Signals by Lysosomal Photodamage. Photochem Photobio. 91, 931–936 (2015).Article 
CAS 

Google Scholar 
Martins, W. K. et al. Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy 15, 259–279 (2019).Article 
CAS 
PubMed 

Google Scholar 
Li, J. et al. Activatable Dual ROS-Producing Probe for Dual Organelle-Engaged Photodynamic Therapy. ACS Appl. Bio Mater. 4, 4618–4628 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wang, S. et al. A lysosomes and mitochondria dual-targeting AIE-active NIR photosensitizer: Constructing amphiphilic structure for enhanced antitumor activity and two-photon imaging. Mater. Today Bio 21, 100721 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shui, S., Zhao, Z., Wang, H., Conrad, M. & Liu, G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol. 45, 102056 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pavani, C., Uchoa, A. F., Oliveira, C. S., Iamamoto, Y. & Baptista, M. S. Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers. Photochem Photobio. Sci. 8, 233–240 (2009).Article 
CAS 

Google Scholar 
Sekkat, N., Bergh, H. V. D., Nyokong, T. & Lange, N. Like a Bolt from the Blue: Phthalocyanines in Biomedical Optics. Molecules 17, 98–144 (2012).Article 
CAS 

Google Scholar 
Xu, S. et al. Tuning the singlet-triplet energy gap: a unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics. Chem. Sci. 6, 5824–5830 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, L. et al. Aggregation-induced intersystem crossing: a novel strategy for efficient molecular phosphorescence. Nanoscale 8, 17422–17426 (2016).Article 
CAS 
PubMed 

Google Scholar 
Ji, C. et al. A Size-Reducible Nanodrug with an Aggregation-Enhanced Photodynamic Effect for Deep Chemo-Photodynamic Therapy. Angew. Chem. Int. Ed. 57, 11384–11388 (2018).Article 
CAS 

Google Scholar 
Cakmak, Y. et al. Designing Excited States: Theory-Guided Access to Efficient Photosensitizers for Photodynamic Action. Angew. Chem. Int. Ed. 50, 11937–11941 (2011).Article 
CAS 

Google Scholar 
Sivandzade, F., Bhalerao, A. & Cucullo, L. Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio. Protoc. 9, https://doi.org/10.21769/BioProtoc.3128 (2019).Thomas, A. P., Palanikumar, L., Jeena, M. T., Kim, K. & Ryu, J. H. Cancer-mitochondria-targeted photodynamic therapy with supramolecular assembly of HA and a water soluble NIR cyanine dye. Chem. Sci. 8, 8351–8356 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, H. et al. Bromo-pentamethine as mitochondria-targeted photosensitizers for cancer cell apoptosis with high efficiency. Dyes Pigments 149. https://doi.org/10.1016/j.dyepig.2017.11.010 (2017).Tian, R. et al. Emerging Design Principle of Near-Infrared Upconversion Sensitizer Based on Mitochondria-Targeted Organic Dye for Enhanced Photodynamic Therapy. Chem. – A Eur. J. 27, 16707–16715 (2021).Article 
CAS 

Google Scholar 
Noh, I. et al. Enhanced Photodynamic Cancer Treatment by Mitochondria-Targeting and Brominated Near-Infrared Fluorophores. Adv. Sci. (Weinh) 5, 1700481 (2018).Article 
PubMed 

Google Scholar 
Shi, M. et al. A protein-conjugated photosensitizer with mitochondrial targeting for enhanced photodynamic therapy. Chem. Commun. 58, 11729–11732 (2022).Article 
CAS 

Google Scholar 
Schaberle, F. A., Galembeck, S. E. & Borissevitch, I. E. Computational study of steric and spectroscopic characteristics of bi-chromophoric cyanine dyes: Comparison with experimental data. Spectrochimica Acta Part A: Mol. Biomolecular Spectrosc. 72, 863–867 (2009).Article 

Google Scholar 
Zhao, X. et al. A cyanine-derivative photosensitizer with enhanced photostability for mitochondria-targeted photodynamic therapy. Chem. Commun. 55, 13542–13545 (2019).Article 
CAS 

Google Scholar 
Chinigò, G. et al. Polymethine dyes-loaded solid lipid nanoparticles (SLN) as promising photosensitizers for biomedical applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 271, 120909 (2022).Article 
PubMed 

Google Scholar 
Lima, E. et al. Photodynamic activity of indolenine-based aminosquaraine cyanine dyes: Synthesis and in vitro photobiological evaluation. Dyes Pigments 174, 108024 (2020).Article 
CAS 

Google Scholar 
Murakami, L. S. et al. Photocytotoxicity of a cyanine dye with two chromophores toward melanoma and normal cells. Biochim Biophys. Acta 1850, 1150–1157 (2015).Article 
CAS 
PubMed 

Google Scholar 
Likhtenstein, G. I., Ishii, K. & Nakatsuji, S. i. Dual Chromophore-Nitroxides: Novel Molecular Probes, Photochemical and Photophysical Models and Magnetic Materials. Photochemistry Photobiol. 83, 871–881 (2007).Article 
CAS 

Google Scholar 
Medvedeva, N., Martin, V. V., Weis, A. L. & Likhtenshten, G. I. Dual fluorophore-nitronyl probe for investigation of superoxide dynamics and antioxidant status of biological systems. J. Photochemistry Photobiol. A: Chem. 163, 45–51 (2004).Article 
CAS 

Google Scholar 
Cui, X. et al. Stable π-radical nanoparticles as versatile photosensitizers for effective hypoxia-overcoming photodynamic therapy. Mater. Horiz. 8, 571–576 (2021). Effective strategy for the improvement PDT efficiency based on PS substitution of tetramethylpiperidinyloxy radicalArticle 
CAS 
PubMed 

Google Scholar 
Xu, F. et al. Radical induced quartet photosensitizers with high 1O2 production for in vivo cancer photodynamic therapy. Sci. China Chem. 64, 488–498 (2021).Article 
CAS 

Google Scholar 
Chu, Z. et al. Recent advances on modulation of H2O2 in tumor microenvironment for enhanced cancer therapeutic efficacy. Coord. Chem. Rev. 481, 215049 (2023).Article 
CAS 

Google Scholar 
Gandioso, A. et al. Ru(II)-Cyanine Complexes as Promising Photodynamic Photosensitizers for the Treatment of Hypoxic Tumours with Highly Penetrating 770nm Near-Infrared Light. Chemistry 23, e202301742 (2023). Demonstration of high efficiency of heptamethine conjugate with phenanthrimidazole Ru2+ complex against cells in hypoxia condition and in vivoChen, Y. et al. A novel approach to a bifunctional photosensitizer for tumor imaging and phototherapy. Bioconjug Chem. 16, 1264–1274 (2005).Article 
CAS 
PubMed 

Google Scholar 
Bříza, T. et al. Combination of two chromophores: Synthesis and PDT application of porphyrin–pentamethinium conjugate. Bioorg. Medicinal Chem. Lett. 22, 82–84 (2012).Article 

Google Scholar 
Shen, R., Bai, J. & Qian, Y. A mitochondria-targeted fluorescent dye naphthalimide-thioether-cyanine for NIR-actived photodynamic therapy of cancer cell. J. Mater. Chem. B 9, https://doi.org/10.1039/D0TB02851G (2021).Lendeckel, U., Karimi, F., Al Abdulla, R. & Wolke, C. The Role of the Ectopeptidase APN/CD13 in Cancer. Biomedicines 11, 724 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yu, Y. et al. Recent Progress in Type I Aggregation-Induced Emission Photosensitizers for Photodynamic Therapy. Molecules 28, 332 (2023).Article 
CAS 

Google Scholar 
Atac, N. et al. Selective antibacterial and antibiofilm activity of chlorinated hemicyanine against gram-positive bacteria. Spectrochimica Acta Part A: Mol. Biomolecular Spectrosc. 316, 124324 (2024).Article 
CAS 

Google Scholar 
Zeng, S. et al. An ER-targeted, Viscosity-sensitive Hemicyanine Dye for the Diagnosis of Nonalcoholic Fatty Liver and Photodynamic Cancer Therapy by Activating Pyroptosis Pathway. Angew. Chem. Int. Ed. 63, e202316487 (2024).Article 
CAS 

Google Scholar 
Hu, F., Xu, S. & Liu, B. Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications. Adv. Mater. 30, 1801350 (2018).Article 

Google Scholar 
Li, S., Jin, X., Zhang, Z., Li, J. & Hua, J. An AIE-active type I photosensitizer based on N,N′-diphenyl-dihydrophenazine for high-performance photodynamic therapy under hypoxia. Mater. Chem. Front. 7, 3738–3746 (2023).Article 
CAS 

Google Scholar 
Entradas, T., Waldron, S. & Volk, M. The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. J. Photochemistry Photobiol. B: Biol. 204, 111787 (2020).Article 
CAS 

Google Scholar 
Cui, C. et al. Enhancing electron transfer of a semiconducting polymer for type I photodynamic and photothermal synergistic therapy. Front. Bioeng. Biotechnol. 10, https://doi.org/10.3389/fbioe.2022.1004921 (2022).Yu, L. et al. Photocatalytic Superoxide Radical Generator that Induces Pyroptosis in Cancer Cells. J. Am. Chem. Soc. 144, 11326–11337 (2022).Article 
CAS 
PubMed 

Google Scholar 
Barreto, J. C., Smith, G. S., Strobel, N. H., McQuillin, P. A. & Miller, T. A. Terephthalic acid: a dosimeter for the detection of hydroxyl radicals in vitro. Life Sci. 56, Pl89–Pl96 (1995).Article 
CAS 
PubMed 

Google Scholar 
Jiang, T., Zeng, Q. & He, J. Do alkaline phosphatases have great potential in the diagnosis, prognosis, and treatment of tumors? Transl. Cancer Res. 12, 2932–2945 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, X. d. Mitochondria-targeted red light-activated superoxide radical-mediated photodynamic therapy of breast cancer. J. Photochemistry Photobiol. A: Chem. 433, 114196 (2022). Highly effective type 1 PS with strong mitochondrial localizationArticle 
CAS 

Google Scholar 
Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Communi. 4332-4353, https://doi.org/10.1039/B904665H (2009).Shigemitsu, H. et al. Fluorescein-Based Type I Supramolecular Photosensitizer via Induction of Charge Separation by Self-Assembly. JACS Au 2, 1472–1478 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yu, D. et al. Improved detection of reactive oxygen species by DCFH-DA: New insight into self-amplification of fluorescence signal by light irradiation. Sens. Actuators B: Chem. 339, 129878 (2021).Article 
CAS 

Google Scholar 
Zhang, Z. et al. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem. Soc. Rev. 51, 1983–2030 (2022).Article 
CAS 
PubMed 

Google Scholar 
Xu, X. et al. Secondary Structure in Overcoming Photosensitizers’ Aggregation: α-Helical Polypeptides for Enhanced Photodynamic Therapy. Adv. Healthc. Mater. 12, 2203386 (2023).Article 
CAS 

Google Scholar 
Ma, X. et al. Fluorescence Aggregation-Caused Quenching versus Aggregation-Induced Emission: A Visual Teaching Technology for Undergraduate Chemistry Students. J. Chem. Educ. 93, 345–350 (2016).Article 
CAS 

Google Scholar 
Ren, Y., Yan, Y. & Qi, H. Photothermal conversion and transfer in photothermal therapy: From macroscale to nanoscale. Adv. Colloid Interface Sci. 308, 102753 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liu, S. et al. Determination of temperature distribution in tissue for interstitial cancer photothermal therapy. Int J. Hyperth. 34, 756–763 (2018).Article 

Google Scholar 
Hwang, E. & Jung, H. S. Organelle-targeted photothermal agents for cancer therapy. Chem. Commun. 57, 7731–7742 (2021).Article 
CAS 

Google Scholar 
Ahmed, K., Tabuchi, Y. & Kondo, T. Hyperthermia: an effective strategy to induce apoptosis in cancer cells. Apoptosis 20, 1411–1419 (2015).Article 
CAS 
PubMed 

Google Scholar 
Pobezhimova, T., Voinikov, V. & Varakina, N. Inactivation of complex I of the respiratory chain of maize mitochondria incubated in vitro by elevated temperature. J. Therm. Biol. 21, 283–288 (1996).Article 
CAS 

Google Scholar 
Kapiszewska, M. & Hopwood, L. E. Mechanisms of membrane damage for CHO cells heated in suspension. J. Cancer Res Clin. Oncol. 114, 23–29 (1988).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z. et al. The Role of Mitochondria-Derived Reactive Oxygen Species in Hyperthermia-Induced Platelet Apoptosis. PLOS ONE 8, e75044 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kadkhoda, J., Tarighatnia, A., Barar, J., Aghanejad, A. & Davaran, S. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagnosis Photodyn. Ther. 37, 102697 (2022).Article 
CAS 
PubMed 

Google Scholar 
Bian, W. et al. A mitochondria-targeted thiazoleorange-based photothermal agent for enhanced photothermal therapy for tumors. Bioorg. Chem. 113, 104954 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhang, J. et al. Selective imaging and cancer cell death via pH switchable near-infrared fluorescence and photothermal effects. Chem. Sci. 7, 5995–6005 (2016). Interesting example of PTT and theranostic agents (pH dependently)Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pan, G. Y. et al. Dual Channel Activatable Cyanine Dye for Mitochondrial Imaging and Mitochondria-Targeted Cancer Theranostics. ACS Biomater. Sci. Eng. 3, 3596–3606 (2017). Example of PTT and theranostic agents (in the dependence of used wavelength)Article 
CAS 
PubMed 

Google Scholar 
Lim, W. et al. Molecular Tuning of IR-786 for Improved Tumor Imaging and Photothermal Therapy. Pharmaceutics 14, https://doi.org/10.3390/pharmaceutics14030676 (2022). Effect heptamethine structure (chloro-cyclohexene ring and carboxylated group) on PS tumor selectivityKong, C. & Chen, X. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review. Int J. Nanomed. 17, 6427–6446 (2022).Article 

Google Scholar 
Waldow, S. M., Henderson, B. W. & Dougherty, T. J. Potentiation of photodynamic therapy by heat: effect of sequence and time interval between treatments in vivo. Lasers Surg. Med 5, 83–94 (1985).Article 
CAS 
PubMed 

Google Scholar 
Hiraoka, M. & Hahn, G. M. Comparison between tumor pH and cell sensitivity to heat in RIF-1 tumors. Cancer Res. 49, 3734–3736 (1989).CAS 
PubMed 

Google Scholar 
Henderson, B. W., Waldow, S. M., Potter, W. R. & Dougherty, T. J. Interaction of photodynamic therapy and hyperthermia: tumor response and cell survival studies after treatment of mice in vivo. Cancer Res. 45, 6071–6077 (1985).CAS 
PubMed 

Google Scholar 
Prinsze, C., Penning, L. C., Dubbelman, T. M. A. R. & VanSteveninck, J. Interaction of Photodynamic Treatment and Either Hyperthermia or Ionizing Radiation and of Ionizing Radiation and Hyperthermia with Respect to Cell Killing of L929 Fibroblasts, Chinese Hamster Ovary Cells, and T24 Human Bladder Carcinoma Cells1. Cancer Res. 52, 117–120 (1992).CAS 
PubMed 

Google Scholar 
Allkanjari, K. & Baldock, R. A. Beyond base excision repair: an evolving picture of mitochondrial DNA repair. Biosci. Rep. 41, https://doi.org/10.1042/bsr20211320 (2021).Rodríguez, M. E., Cogno, I. S., Milla Sanabria, L. S., Morán, Y. S. & Rivarola, V. A. Heat shock proteins in the context of photodynamic therapy: autophagy, apoptosis and immunogenic cell death. Photochem Photobio. Sci. 15, 1090–1102 (2016).Article 

Google Scholar 
Kuang, S. et al. Photodecaging of a Mitochondria-Localized Iridium(III) Endoperoxide Complex for Two-Photon Photoactivated Therapy under Hypoxia. J. Am. Chem. Soc. 144, 4091–4101 (2022).Article 
CAS 
PubMed 

Google Scholar 
Deng, X., Shao, Z. & Zhao, Y. Solutions to the Drawbacks of Photothermal and Photodynamic Cancer Therapy. Adv. Sci. 8, 2002504 (2021).Article 
CAS 

Google Scholar 
Yang, K., Dong, Y., Li, X., Wang, F. & Zhang, Y. Dual-targeted delivery of paclitaxel and indocyanine green with aptamer-modified ferritin for synergetic chemo-phototherapy. Colloids Surf. B: Biointerfaces 229, 113437 (2023).Article 
CAS 
PubMed 

Google Scholar 
Gunduz, H. et al. Dual laser activatable brominated hemicyanine as a highly efficient and photostable multimodal phototherapy agent. J. Photochem Photobio. B 217, 112171 (2021). Example of dual PDT and PTT agents (in the dependence of used wavelength)Article 
CAS 

Google Scholar 
Luo, S. et al. Mitochondria-Targeted Small-Molecule Fluorophores for Dual Modal Cancer Phototherapy. Adv. Funct. Mater. 26, 2826–2835 (2016). Effect heptamethine substitution on its PDT and PTT efficiencyArticle 
CAS 

Google Scholar 
Zhang, J. et al. Task-Specific Design of Immune-Augmented Nanoplatform to Enable High-Efficiency Tumor Immunotherapy. ACS Appl Mater. Interfaces 11, 42904–42916 (2019). Perspective structure motif of dual and PDT and PTT agents with potent antimetastatic effectArticle 
CAS 
PubMed 

Google Scholar 
Li, Y. et al. All-in-One Heptamethine Cyanine Amphiphiles for Dual Imaging-Guided Chemo-Photodynamic-Photothermal Therapy of Breast Cancer. Adv Healthc Mater.12, e2300941 (2023). Increase of PDT and PTT efficiency of heptamethine via substitution and nano-formulation by fluorinated amphiphilsAl-Ali, A. A. A. et al. Recent Advances in Photothermal Therapies Against Cancer and the Role of Membrane Transporter Modulators on the Efficacy of This Approach. Technol. Cancer Res Treat. 22, 15330338231168016 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, P. T., Tsai, Y. J., Lee, M. J. & Chen, C. T. Increased Histone Deacetylase Activity Involved in the Suppressed Invasion of Cancer Cells Survived from ALA-Mediated Photodynamic Treatment. Int J. Mol. Sci. 16, 23994–24010 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tsai, T. et al. ALA-PDT results in phenotypic changes and decreased cellular invasion in surviving cancer cells. Lasers Surg. Med 41, 305–315 (2009).Article 
PubMed 

Google Scholar 
Ailioaie, L. M., Ailioaie, C. & Litscher, G. Synergistic Nanomedicine: Photodynamic, Photothermal and Photoimmune Therapy in Hepatocellular Carcinoma: Fulfilling the Myth of Prometheus? Int. J. Mol. Sci. 24, 8308 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yin, S., Chen, Z., Chen, D. & Yan, D. Strategies targeting PD-L1 expression and associated opportunities for cancer combination therapy. Theranostics 13, 1520–1544 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, S. et al. NIR-II Imaging-Guided Mitochondrial-Targeting Organic Nanoparticles for Multimodal Synergistic Tumor Therapy. Small 19, 2207995 (2023).Article 
CAS 

Google Scholar 
Huang, J. et al. Dual mitigation of immunosuppression combined with photothermal inhibition for highly effective primary tumor and metastases therapy. Biomaterials 274, 120856 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhou, Z. et al. Selectively down-regulated PD-L1 by albumin-phenformin nanoparticles mediated mitochondrial dysfunction to stimulate tumor-specific immunological response for enhanced mild-temperature photothermal efficacy. J. Nanobiotechnology 19, 375 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Broekgaarden, M., Weijer, R., van Gulik, T. M., Hamblin, M. R. & Heger, M. Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev. 34, 643–690 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Matroule, J. Y., Volanti, C. & Piette, J. NF-kappaB in photodynamic therapy: discrepancies of a master regulator. Photochem Photobio. 82, 1241–1246 (2006).Article 
CAS 

Google Scholar 
Piette, J. Signalling pathway activation by photodynamic therapy: NF-κB at the crossroad between oncology and immunology. Photochem Photobio. Sci. 14, 1510–1517 (2015).Article 
CAS 

Google Scholar 
Hanlon, J. G., Adams, K., Rainbow, A. J., Gupta, R. S. & Singh, G. Induction of Hsp60 by Photofrin-mediated photodynamic therapy. J. Photochem Photobio. B 64, 55–61 (2001).Article 
CAS 

Google Scholar 
Aniogo, E. C., George, B. P. A. & Abrahamse, H. Role of Bcl-2 Family Proteins in Photodynamic Therapy Mediated Cell Survival and Regulation. Molecules 25, https://doi.org/10.3390/molecules25225308 (2020).Matroule, J. Y. et al. Role of nuclear factor-kappa B in colon cancer cell apoptosis mediated by aminopyropheophorbide photosensitization. Photochem Photobio. 70, 540–548 (1999).CAS 

Google Scholar 
Zhou, F., Xing, D. & Chen, W. R. Dynamics and mechanism of HSP70 translocation induced by photodynamic therapy treatment. Cancer Lett. 264, 135–144 (2008).Article 
CAS 
PubMed 

Google Scholar 
Ryan, K. M., Ernst, M. K., Rice, N. R. & Vousden, K. H. Role of NF-κB in p53-mediated programmed cell death. Nature 404, 892–897 (2000).Article 
CAS 
PubMed 

Google Scholar 
Shen, X. Y., Zacal, N., Singh, G. & Rainbow, A. J. Alterations in mitochondrial and apoptosis-regulating gene expression in photodynamic therapy-resistant variants of HT29 colon carcinoma cells. Photochem Photobio. 81, 306–313 (2005).CAS 

Google Scholar 
Bhowmick, R. & Girotti, A. W. Pro-survival and pro-growth effects of stress-induced nitric oxide in a prostate cancer photodynamic therapy model. Cancer Lett. 343, 115–122 (2014).Article 
CAS 
PubMed 

Google Scholar 
Wang, P. et al. Enhancing the Efficiency of Mild-Temperature Photothermal Therapy for Cancer Assisting with Various Strategies. Pharmaceutics 14, https://doi.org/10.3390/pharmaceutics14112279 (2022).Herrmann, J. M., Stuart, R. A., Craig, E. A. & Neupert, W. Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA. J. Cell Biol. 127, 893–902 (1994).Article 
CAS 
PubMed 

Google Scholar 
Alvi, S. B. et al. The “nano to micro” transition of hydrophobic curcumin crystals leading to in situ adjuvant depots for Au-liposome nanoparticle mediated enhanced photothermal therapy. Biomater. Sci. 7, 3866–3875 (2019).Article 
CAS 
PubMed 

Google Scholar 
Andlinger, D. J. & Kulozik, U. Protein-protein interactions explain the temperature-dependent viscoelastic changes occurring in colloidal protein gels. Soft Matter 19, 1144–1151 (2023).Article 
CAS 
PubMed 

Google Scholar 
Sroka, K. et al. BAG1 modulates huntingtin toxicity, aggregation, degradation, and subcellular distribution. J. Neurochem 111, 801–807 (2009).Article 
CAS 
PubMed 

Google Scholar 
Gennaro, V. J., Wedegaertner, H. & McMahon, S. B. Interaction between the BAG1S isoform and HSP70 mediates the stability of anti-apoptotic proteins and the survival of osteosarcoma cells expressing oncogenic MYC. BMC Cancer 19, 258 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y. et al. BAG-1L Protects SH-SY5Y Neuroblastoma Cells Against Hypoxia/Re-oxygenation Through Up-Regulating HSP70 and Activating PI3K/AKT Signaling Pathway. Neurochem Res. 42, 2861–2868 (2017).Article 
CAS 
PubMed 

Google Scholar 
Koishi, M. et al. The effects of KNK437, a novel inhibitor of heat shock protein synthesis, on the acquisition of thermotolerance in a murine transplantable tumor in vivo. Clin. Cancer Res. 7, 215–219 (2001).CAS 
PubMed 

Google Scholar 
Schopf, F. H., Biebl, M. M. & Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 18, 345–360 (2017).Article 
CAS 
PubMed 

Google Scholar 
Gopalakrishnan, R., Matta, H. & Chaudhary, P. M. A purine scaffold HSP90 inhibitor BIIB021 has selective activity against KSHV-associated primary effusion lymphoma and blocks vFLIP K13-induced NF-κB. Clin. Cancer Res. 19, 5016–5026 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rickard, B. P. et al. Photochemical Targeting of Mitochondria to Overcome Chemoresistance in Ovarian Cancer (†). Photochem Photobio. 99, 448–468 (2023).Article 
CAS 

Google Scholar 
Ahmed, J. II, Abdul Hamid, A. A., Abd Halim, K. B. & Che Has, A. T. P-glycoprotein: new insights into structure, physiological function, regulation and alterations in disease. Heliyon 8, e09777 (2022).Article 

Google Scholar 
Druzhkova, I. et al. Effect of Collagen Matrix on Doxorubicin Distribution and Cancer Cells’ Response to Treatment in 3D Tumor Model. Cancers 14, 5487 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ferraro, G. et al. Cisplatin binding to angiogenin protein: new molecular pathways and targets for the drug’s anticancer activity. Dalton Trans. 52, 9058–9067 (2023).Article 
CAS 
PubMed 

Google Scholar 
Deveci, H. A., Nazıroğlu, M. & Nur, G. 5-Fluorouracil-induced mitochondrial oxidative cytotoxicity and apoptosis are increased in MCF-7 human breast cancer cells by TRPV1 channel activation but not Hypericum perforatum treatment. Mol. Cell Biochem 439, 189–198 (2018).Article 
CAS 
PubMed 

Google Scholar 
Xiao, H. et al. Nanodrug Inducing Autophagy Inhibition and Mitochondria Dysfunction for Potentiating Tumor Photo-Immunotherapy. Small 19, 2300280 (2023).Article 
CAS 

Google Scholar 
Feng, X., Zhang, Y., Wang, P., Liu, Q. & Wang, X. Energy metabolism targeted drugs synergize with photodynamic therapy to potentiate breast cancer cell death. Photochem Photobio. Sci. 13, 1793–1803 (2014).Article 
CAS 

Google Scholar 
Huang, Y. et al. The Potential of Lonidamine in Combination with Chemotherapy and Physical Therapy in Cancer Treatment. Cancers 12, 3332 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhu, H., Jia, Z., Li, Y. R. & Danelisen, I. Molecular mechanisms of action of metformin: latest advances and therapeutic implications. Clin. Exp. Med. 23, 2941–2951 (2023).Article 
PubMed 

Google Scholar 
Ben-Yoseph, O., Lyons, J. C., Song, C. W. & Ross, B. D. Mechanism of action of lonidamine in the 9L brain tumor model involves inhibition of lactate efflux and intracellular acidification. J. Neuro-Oncol. 36, 149–157 (1998).Article 
CAS 

Google Scholar 
Cha, J. H. et al. Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1. Mol. Cell 71, 606–620.e607 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ishaq, M. et al. Functional inhibition of Hsp70 by Pifithrin-μ switches Gambogic acid induced caspase dependent cell death to caspase independent cell death in human bladder cancer cells. Biochim Biophys. Acta 1863, 2560–2573 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zhang, G., Cheng, W., Du, L., Xu, C. & Li, J. Synergy of hypoxia relief and heat shock protein inhibition for phototherapy enhancement. J. Nanobiotechnology 19, 9 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, W. et al. Mitochondria-Mediated HSP Inhibition Strategy for Enhanced Low-Temperature Photothermal Therapy. ACS Appl. Mater. Interfaces 15, 26252–26262 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhang, T. et al. Hsp90 inhibitor-loaded IR780 micelles for mitochondria-targeted mild-temperature photothermal therapy in xenograft models of human breast cancer. Cancer Lett. 500, 41–50 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kessel, D. Reversible effects of photodamage directed toward mitochondria. Photochem Photobio. 90, 1211–1213 (2014).Article 
CAS 

Google Scholar 
Wang, P. et al. Cancer Cytomembrane-Cloaked Prussian Blue Nanoparticles Enhance the Efficacy of Mild-Temperature Photothermal Therapy by Disrupting Mitochondrial Functions of Cancer Cells. ACS Appl Mater. Interfaces 13, 37563–37577 (2021).Article 
CAS 
PubMed 

Google Scholar 
Hahn, Y. I. et al. Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells. Sci. Rep. 8, 6409 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Mohankumar, K. et al. BDMC-A, an analog of curcumin, inhibits markers of invasion, angiogenesis, and metastasis in breast cancer cells via NF- k B pathway—A comparative study with curcumin. Biomedicine Pharmacother. = Biomedecine pharmacotherapie 74, 178–186 (2015).Article 
CAS 

Google Scholar 
Konduri, S. et al. In Vitro Growth Suppression of Renal Carcinoma Cells by Curcumin. J. Patient-Centered Res. Rev. 2, 156–164 (2015).Article 

Google Scholar 
Li, S. et al. Enhanced Photothermal-Photodynamic Therapy by Indocyanine Green and Curcumin-Loaded Layered MoS(2) Hollow Spheres via Inhibition of P-Glycoprotein. Int J. Nanomed. 16, 433–442 (2021).Article 

Google Scholar 
Cui, X. et al. Multicomponent-assembled nanodiamond hybrids for targeted and imaging guided triple-negative breast cancer therapy via a ternary collaborative strategy. Biomater. Sci. 9, 3838–3850 (2021).Article 
CAS 
PubMed 

Google Scholar 
Caruso Bavisotto, C. et al. Curcumin Affects HSP60 Folding Activity and Levels in Neuroblastoma Cells. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21020661 (2020).Kejik, Z. et al. Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design. Pharmaceutics 13, 1879 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dytrych, P. et al. Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed. Pharmacother. 163, 114758 (2023).Article 
CAS 
PubMed 

Google Scholar 
Teiten, M. H., Reuter, S., Schmucker, S., Dicato, M. & Diederich, M. Induction of heat shock response by curcumin in human leukemia cells. Cancer Lett. 279, 145–154 (2009).Article 
CAS 
PubMed 

Google Scholar 
Li, X. et al. Mitochondria-Targeting MoS(2)-Based Nanoagents for Enhanced NIR-II Photothermal-Chemodynamic Synergistic Oncotherapy. ACS Appl Mater. Interfaces 13, 55928–55938 (2021).Article 
CAS 
PubMed 

Google Scholar 
Quiogue, G. et al. Signaling From Lysosomes Enhances Mitochondria-Mediated Photodynamic Therapy In Cancer Cells. Proc. SPIE Int Soc. Opt. Eng. 7380, 1–8 (2009).PubMed 
PubMed Central 

Google Scholar 
Kessel, D. & Reiners, J. J. Jr. Enhanced efficacy of photodynamic therapy via a sequential targeting protocol. Photochem Photobio. 90, 889–895 (2014).Article 
CAS 

Google Scholar 
Shi, H. et al. A Metal-Polyphenol-Based Oxygen Economizer and Fenton Reaction Amplifier for Self-Enhanced Synergistic Photothermal/Chemodynamic/Chemotherapy. Adv. Healthc. Mater. 12, 2300054 (2023).Article 
CAS 

Google Scholar 
Richardson, R. B. & Harper, M. E. Mitochondrial stress controls the radiosensitivity of the oxygen effect: Implications for radiotherapy. Oncotarget 7, 21469–21483 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Gao, M. et al. Synthesis of a versatile mitochondria-targeting small molecule for cancer near-infrared fluorescent imaging and radio/photodynamic/photothermal synergistic therapies. Mater. Today Bio 15, 100316 (2022). Heptamethinium substituted by radiosensitizer for mitochondria selective PDT, PDT and radiotherapy-strongly effect on the mice OSArticle 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marrache, S., Tundup, S., Harn, D. A. & Dhar, S. Ex vivo generation of functional immune cells by mitochondria-targeted photosensitization of cancer cells. Methods Mol. Biol. 1265, 113–122 (2015).Article 
CAS 
PubMed 

Google Scholar 
Chen, W. et al. Dual drugs decorated bacteria irradiate deep hypoxic tumor and arouse strong immune responses. Biomaterials 286, 121582 (2022). Interesting agents (Salmonella substituted by hepthamethine) with excellent effect on the antitumor immunity and mice OSArticle 
CAS 
PubMed 

Google Scholar 
Lahooti, B. et al. Targeting endothelial permeability in the EPR effect. J. Control Release 361, 212–235 (2023).Article 
CAS 
PubMed 

Google Scholar 
Ng, K. K. & Zheng, G. Molecular Interactions in Organic Nanoparticles for Phototheranostic Applications. Chem. Rev. 115, 11012–11042 (2015).Article 
CAS 
PubMed 

Google Scholar 
He, H. et al. Photoconversion-Tunable Fluorophore Vesicles for Wavelength-Dependent Photoinduced Cancer Therapy. Adv. Mater. 29, 10 (2017).Article 

Google Scholar 
Chen, Q., Liang, C., Wang, C. & Liu, Z. An Imagable and Photothermal “Abraxane-Like” Nanodrug for Combination Cancer Therapy to Treat Subcutaneous and Metastatic Breast Tumors. Adv. Mater. 27, 903–910 (2015).Article 
CAS 
PubMed 

Google Scholar 
Král, V. et al. Nanomedicine -: Current status and perspectives:: A big potential or just a catchword? Chem. Listy 100, 4–9 (2006).
Google Scholar 
Zhao, X. et al. AIEgens Conjugation Improves the Photothermal Efficacy and Near-Infrared Imaging of Heptamethine Cyanine IR-780. ACS Appl. Mater. Interfaces 12, 16114–16124 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhao, X. et al. A Tumor-Targeting Near-Infrared Heptamethine Cyanine Photosensitizer with Twisted Molecular Structure for Enhanced Imaging-Guided Cancer Phototherapy. J. Am. Chem. Soc. 143, 20828–20836 (2021). Nano self-assembly bis- heptamethine PPT agents with very strong antitumor efficiencyArticle 
CAS 
PubMed 

Google Scholar 
Wang, X. et al. Colloidally Stabilized DSPE-PEG-Glucose/Calcium Phosphate Hybrid Nanocomposites for Enhanced Photodynamic Cancer Therapy via Complementary Mitochondrial Ca(2+) Overload and Autophagy Inhibition. ACS Appl Mater. Interfaces 13, 39112–39125 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kim, S., Ohulchanskyy, T. Y., Pudavar, H. E., Pandey, R. K. & Prasad, P. N. Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J. Am. Chem. Soc. 129, 2669–2675 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, X. et al. Oxygen tank for synergistic hypoxia relief to enhance mitochondria-targeted photodynamic therapy. Biomater. Res. 26, 47 (2022). Perfluoralkyl drug delivery system (combined transport of cyanine dye and oxygen) for targeting hypoxia tumorArticle 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Luo, S. et al. Tailoring Multifunctional Small Molecular Photosensitizers to In Vivo Self-Assemble with Albumin to Boost Tumor-Preferential Accumulation, NIR Imaging, and Photodynamic/Photothermal/Immunotherapy. Small 18, e2201298 (2022).Article 
PubMed 

Google Scholar 
Tan, X. et al. Structure-Guided Design and Synthesis of a Mitochondria-Targeting Near-Infrared Fluorophore with Multimodal Therapeutic Activities. Adv Mater 29, 1704196 (2017). Effect of HSA complexation on photoactivity of heptamethine (in vitro and in vivo)Dar, N. & Ankari, R. Theoretical Models, Preparation, Characterization and Applications of Cyanine J-Aggregates: A Minireview. ChemistryOpen 11, e202200103 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nie, J. Z., Wang, M. T. & Nie, D. Regulations of Tumor Microenvironment by Prostaglandins. Cancers (Basel) 15, 3090 (2023).Gustafsson, A. et al. Receptor and enzyme expression for prostanoid metabolism in colorectal cancer related to tumor tissue PGE2. Int J. Oncol. 36, 469–478 (2010).CAS 
PubMed 

Google Scholar 
Wang, L. et al. Nanoscale photosensitizer with tumor-selective turn-on fluorescence and activatable photodynamic therapy treatment for COX-2 overexpressed cancer cells. J. Mater. Chem. B 9, 2001–2009 (2021). Nano self-assembly sqairaine conjugate with indomethacin (COX inhibitor) for photoselective targeting cancer cellsArticle 
CAS 
PubMed 

Google Scholar 
Li, Y. et al. Anionic Cyanine J-Type Aggregate Nanoparticles with Enhanced Photosensitization for Mitochondria-Targeting Tumor Phototherapy. Angew. Chem. Int. Ed. 61, e202203093 (2022). Supramolecular nano-agraggegates of photoactive cyanine dye with strong antitumor efficiencyArticle 
CAS 

Google Scholar 
Wu, W. et al. Polymerization-Enhanced Photosensitization. Chem 4, 1937–1951 (2018).Article 
CAS 

Google Scholar 
Dickson, M. A. et al. Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Ann. Oncol. 24, 252–257 (2013).Article 
CAS 
PubMed 

Google Scholar 
Lv, F., Feng, E., Lv, S., Liu, D. & Song, F. Metal-Coordination-Mediated H-Aggregates of Cyanine Dyes for Effective Photothermal Therapy. Chem. – A Eur. J. 29, e202301483 (2023).Article 
CAS 

Google Scholar 
Nath, P. et al. Intracellular detection of singlet oxygen using fluorescent nanosensors. Analyst 146, 3933–3941 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Weijer, R. et al. Enhancing photodynamic therapy of refractory solid cancers: Combining second-generation photosensitizers with multi-targeted liposomal delivery. J. Photochemistry Photobiol. C: Photochemistry Rev. 23, 103–131 (2015).Article 
CAS 

Google Scholar 
Gao, G. et al. Enzyme-Mediated Tumor Starvation and Phototherapy Enhance Mild-Temperature Photothermal Therapy. Adv. Funct. Mater. 30, 1909391 (2020).Article 
CAS 

Google Scholar 
Neunert, G. et al. Disruptive effect of tocopherol oxalate on DPPC liposome structure: DSC, SAXS, and fluorescence anisotropy studies. Chem. Phys. Lipids 216, 104–113 (2018).Article 
CAS 
PubMed 

Google Scholar 
Buckton, L., Wang, Y., McConnell, J. & McAlpine, S. Vol. 19 (2015).Vial, G., Detaille, D. & Guigas, B. Role of Mitochondria in the Mechanism(s) of Action of Metformin. Front Endocrinol. (Lausanne) 10, 294 (2019).Article 
PubMed 

Google Scholar 
Yang, Z. et al. Defeating relapsed and refractory malignancies through a nano-enabled mitochondria-mediated respiratory inhibition and damage pathway. Biomaterials 229, 119580 (2020). Effective reduction of PTT induced HIF-1a (in vitro and in vivo) by metforminArticle 
CAS 
PubMed 

Google Scholar 
Zhang, X. et al. Near-Infrared Light-Activated Oxygen Generator a Multidynamic Photo-Nanoplatform for Effective Anti-Cutaneous Squamous Cell Carcinoma Treatment. Int. J. Nanomed. 17, 5761–5777 (2022). Strong increase PPT efficiency via catalase co-application in hypoxia condition (in vitro and in vivo)Article 

Google Scholar 
Yu, H., Yang, Z., Li, F., Xu, L. & Sun, Y. Cell-mediated targeting drugs delivery systems. Drug Deliv. 27, 1425–1437 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mai, X. et al. Integration of immunogenic activation and immunosuppressive reversion using mitochondrial-respiration-inhibited platelet-mimicking nanoparticles. Biomaterials 232, 119699 (2020).Article 
CAS 
PubMed 

Google Scholar 
Avci, P., Erdem, S. S. & Hamblin, M. R. Photodynamic therapy: one step ahead with self-assembled nanoparticles. J. Biomed. Nanotechnol. 10, 1937–1952 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wen, J. et al. Mitochondria-targeted nanoplatforms for enhanced photodynamic therapy against hypoxia tumor. J. Nanobiotechnology 19, 440 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, L. et al. Intelligent triggering of nanomicelles based on a ROS-activated anticancer prodrug and photodynamic therapy (PDT)-synergistic therapy for lung cancers. Eur. J. Med. Chem. 241, 114622 (2022).Article 
CAS 
PubMed 

Google Scholar 
Pan, G.-Y. et al. Cyanine-Containing Polymeric Nanoparticles with Imaging/Therapy-Switchable Capability for Mitochondria-Targeted Cancer Theranostics. ACS Appl. Nano Mater. 1, 2885–2897 (2018).Article 
CAS 

Google Scholar 
Traverso, N. et al. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell Longev. 2013, 972913 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Yang, G. et al. GSH-Activatable NIR Nanoplatform with Mitochondria Targeting for Enhancing Tumor-Specific Therapy. ACS Appl. Mater. Interfaces 11, 44961–44969 (2019). Pro-PDT agents for the selective targeting cancer cells with high GSH levelArticle 
CAS 
PubMed 

Google Scholar 
Li, S., Johnson, J., Peck, A. & Xie, Q. Near infrared fluorescent imaging of brain tumor with IR780 dye incorporated phospholipid nanoparticles. J. Transl. Med. 15, 18 (2017). Excellent drug delivery system for cyanine dye with highly accumulation in the brainArticle 
PubMed 
PubMed Central 

Google Scholar 
Hong, L. et al. Rational design of an oxygen-enriching nanoemulsion for enhanced near-infrared laser activatable photodynamic therapy against hypoxic tumors. Colloids Surf. B: Biointerfaces 198, 111500 (2021).Article 
CAS 
PubMed 

Google Scholar 
Nguyen, M. T. et al. Perfluorocarbon Nanoemulsions with Fluorous Chlorin-Type Photosensitizers for Antitumor Photodynamic Therapy in Hypoxia. Int. J. Mol. Sci. 24, 7995 (2023).Hoogenboezem, E. N. & Duvall, C. L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev. 130, 73–89 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, Z. et al. Cascade two-stage tumor re-oxygenation and immune re-sensitization mediated by self-assembled albumin-sorafenib nanoparticles for enhanced photodynamic immunotherapy. Acta Pharm. Sin. B 12, 4204–4223 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Y. et al. Tumor Selective Metabolic Reprogramming as a Prospective PD-L1 Depression Strategy to Reactivate Immunotherapy. Adv. Mater. 34, 2206121 (2022). Effect of HSA complexation on antitumor efficiency of heptamethine conjugate with CI and CII inhibitor (stimulation of immune system, HIF-1a repression and antimetastatic activity)Article 
CAS 

Google Scholar 
Gao, G. et al. Molecular Targeting-Mediated Mild-Temperature Photothermal Therapy with a Smart Albumin-Based Nanodrug. Small 15, 1900501 (2019).Article 

Google Scholar 
Zhang, R., Zhao, X., Jia, A., Wang, C. & Jiang, H. Hyaluronic acid-based prodrug nanomedicines for enhanced tumor targeting and therapy: A review. Int J. Biol. Macromol. 249, 125993 (2023).Article 
CAS 
PubMed 

Google Scholar 
Michalczyk, M., Humeniuk, E., Adamczuk, G. & Korga-Plewko, A. Hyaluronic Acid as a Modern Approach in Anticancer Therapy-Review. Int. J. Mol. Sci. 24, https://doi.org/10.3390/ijms24010103 (2022).Wei, Y., Quan, L., Zhou, C. & Zhan, Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine 13, 1495–1512 (2018).Article 
CAS 
PubMed 

Google Scholar 
Tian, H. et al. A targeted nanomodulator capable of manipulating tumor microenvironment against metastasis. J. Controlled Release 348, 590–600 (2022). Effect of co-applicated lactase oxidase on PDT and PTT efficiency – increase OS and metastasis repressionArticle 
CAS 

Google Scholar 
Xu, S. et al. Dual tumor- and subcellular-targeted photodynamic therapy using glucose-functionalized MoS(2) nanoflakes for multidrug-resistant tumor ablation. Biomaterials 290, 121844 (2022). Demonstration of efficiency of mitochondrial PTT and especially its combination with PTT lysosome PTT (in vitro and in vivo)Article 
CAS 
PubMed 

Google Scholar 
Marín-Hernández, Á. et al. Hypoglycemia Enhances Epithelial-Mesenchymal Transition and Invasiveness, and Restrains the Warburg Phenotype, in Hypoxic HeLa Cell Cultures and Microspheroids. J. Cell. Physiol. 232, 1346–1359 (2017).Article 
PubMed 

Google Scholar 
Jagdale, S. et al. GLUT1 transporter-facilitated solid lipid nanoparticles loaded with anti-cancer therapeutics for ovarian cancer targeting. Int J. Pharm. 637, 122894 (2023).Article 
CAS 
PubMed 

Google Scholar 
Hashemkhani, M., Muti, A., Sennaroğlu, A. & Yagci Acar, H. Multimodal image-guided folic acid targeted Ag-based quantum dots for the combination of selective methotrexate delivery and photothermal therapy. J. Photochemistry Photobiol. B: Biol. 213, 112082 (2020).Article 
CAS 

Google Scholar 
Wu, P.-J. et al. Methotrexate-conjugated AgInS2/ZnS quantum dots for optical imaging and drug delivery. Mater. Lett. 128, 412–416 (2014).Article 
CAS 

Google Scholar 
Hu, F. et al. Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res. 8, https://doi.org/10.1007/s12274-014-0653-2 (2015).Hashemkhani, M., Bilici, K., Muti, A., Sennaroglu, A. & Acar, H. Y. Ag2S-Glutathione quantum dots for NIR image guided photothermal therapy. N. J. Chem. 44, 5419–5427 (2020).Article 
CAS 

Google Scholar 
Celikbas, E. et al. Image-Guided Enhanced PDT/PTT Combination Therapy Using Brominated Hemicyanine-Loaded Folate Receptor-Targeting Ag2S Quantum Dots. Bioconjugate Chem. 34, 880–892 (2023).Article 
CAS 

Google Scholar 
Duman, F. D. et al. Folic acid-conjugated cationic Ag2S quantum dots for optical imaging and selective doxorubicin delivery to HeLa cells. Nanomedicine 12, 2319–2333 (2017).Article 
CAS 
PubMed 

Google Scholar 
Yang, F., Xu, M., Chen, X. & Luo, Y. Spotlight on porphyrins: Classifications, mechanisms and medical applications. Biomedicine Pharmacother. 164, 114933 (2023).Article 
CAS 

Google Scholar 
Jiang, Z., Xiao, W. & Fu, Q. Stimuli responsive nanosonosensitizers for sonodynamic therapy. J. Control Release 361, 547–567 (2023).Article 
CAS 
PubMed 

Google Scholar 
Qian, X., Zheng, Y. & Chen, Y. Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Adv. Mater. 28, 8097–8129 (2016).Article 
CAS 
PubMed 

Google Scholar 
Silva, E. C. I., Pratavieira, S., Salvador Bagnato, V. & Alves, F. Sonophotodynamic inactivation of Pseudomonas aeruginosa biofilm mediated by curcumin. Biofouling. 39, 1–11 (2023).Li, Q. et al. The effects of Ce6-mediated sono-photodynamic therapy on cell migration, apoptosis and autophagy in mouse mammary 4T1 cell line. Ultrasonics 54, 981–989 (2014).Article 
CAS 
PubMed 

Google Scholar 
Shi, H., Tan, X., Wang, P. & Qin, J. A novel near-infrared trifluoromethyl heptamethine cyanine dye with mitochondria-targeting for integration of collaborative treatment of photothermal and sonodynamic therapy. Mater. Today Adv. 14, 100251 (2022).Article 
CAS 

Google Scholar 
Wang, P. et al. Anti-metastatic and pro-apoptotic effects elicited by combination photodynamic therapy with sonodynamic therapy on breast cancer both in vitro and in vivo. Ultrason Sonochem. 23, 116–127 (2015).Article 
CAS 
PubMed 

Google Scholar 
Hu, D. et al. Trimodal Sono/Photoinduced Focal Therapy for Localized Prostate Cancer: Single-Drug-Based Nanosensitizer under Dual-Activation. Adv. Funct. Mater. 31, 2104473 (2021).Article 
CAS 

Google Scholar 
Guo, X. et al. Mito-Bomb: Targeting Mitochondria for Cancer Therapy (Adv. Mater. 43/2021). Adv. Mater. 33, 2170340 (2021).Article 

Google Scholar 
Peng, X. et al. Fluorescence Ratiometry and Fluorescence Lifetime Imaging: Using a Single Molecular Sensor for Dual Mode Imaging of Cellular Viscosity. J. Am. Chem. Soc. 133, 6626–6635 (2011).Article 
CAS 
PubMed 

Google Scholar 
Ciubini, B. et al. Design and synthesis of symmetrical pentamethine cyanine dyes as NIR photosensitizers for PDT. Dyes Pigments 160, 806–813 (2019).Article 
CAS 

Google Scholar 
Zhang, M. et al. A Dual-Function Hemicyanine Material with Highly Efficient Photothermal and Photodynamic Effect Used for Tumor Therapy. Adv. Healthc. Mater. 13, 2303432 (2024).Article 
CAS 

Google Scholar 
Wysocki, M. et al. Excited State and Reactive Oxygen Species against Cancer and Pathogens: A Review on Sonodynamic and Sono-Photodynamic Therapy. ChemMedChem 17, e202200185 (2022).Article 
CAS 
PubMed 

Google Scholar 
Sowers, A. E. & Hackenbrock, C. R. Rate of lateral diffusion of intramembrane particles: measurement by electrophoretic displacement and rerandomization. Proc. Natl Acad. Sci. 78, 6246–6250 (1981).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, G. et al. Advanced Near-Infrared Light for Monitoring and Modulating the Spatiotemporal Dynamics of Cell Functions in Living Systems. Adv. Sci. (Weinh) 7, 1903783 (2020).Article 
CAS 
PubMed 

Google Scholar 
Hildingsson, S., Gebre-Medhin, M., Zschaeck, S. & Adrian, G. Hypoxia in relationship to tumor volume using hypoxia PET-imaging in head & neck cancer – A scoping review. Clin. Transl. Radiat. Oncol. 36, 40–46 (2022).PubMed 
PubMed Central 

Google Scholar 
Chen, J. et al. Oxygen-Self-Produced Nanoplatform for Relieving Hypoxia and Breaking Resistance to Sonodynamic Treatment of Pancreatic Cancer. ACS Nano 11, 12849–12862 (2017).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles