Multi-tiered chemical proteomic maps of tryptoline acrylamide–protein interactions in cancer cells

Chakravarty, D. & Solit, D. B. Clinical cancer genomic profiling. Nat. Rev. Genet. 22, 483–501 (2021).Article 
CAS 
PubMed 

Google Scholar 
Schreiber, S. L. A chemical biology view of bioactive small molecules and a binder-based approach to connect biology to precision medicines. Isr. J. Chem. 59, 52–59 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z. Z., Shi, X. X., Huang, G. Y., Hao, G. F. & Yang, G. F. Fragment-based drug discovery supports drugging ‘undruggable’ protein-protein interactions. Trends Biochem. Sci. 48, 539–552 (2023).Article 
CAS 
PubMed 

Google Scholar 
St Denis, J. D., Hall, R. J., Murray, C. W., Heightman, T. D. & Rees, D. C. Fragment-based drug discovery: opportunities for organic synthesis. RSC Med. Chem. 12, 321–329 (2020).Article 

Google Scholar 
Lundquist, K. P., Panchal, V., Gotfredsen, C. H., Brenk, R. & Clausen, M. H. Fragment-based drug discovery for RNA targets. ChemMedChem 16, 2588–2603 (2021).Article 
CAS 
PubMed 

Google Scholar 
Erlanson, D. A., Davis, B. J. & Jahnke, W. Fragment-based drug discovery: advancing fragments in the absence of crystal structures. Cell Chem. Biol. 26, 9–15 (2019).Article 
CAS 
PubMed 

Google Scholar 
Bon, M., Bilsland, A., Bower, J. & McAulay, K. Fragment-based drug discovery-the importance of high-quality molecule libraries. Mol. Oncol. 16, 3761–3777 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wen, X., Wu, X., Jin, R. & Lu, X. Privileged heterocycles for DNA-encoded library design and hit-to-lead optimization. Eur. J. Med. Chem. 248, 115079 (2023).Article 
CAS 
PubMed 

Google Scholar 
Shi, B., Zhou, Y., Huang, Y., Zhang, J. & Li, X. Recent advances on the encoding and selection methods of DNA-encoded chemical library. Bioorg. Med. Chem. Lett. 27, 361–369 (2017).Article 
CAS 
PubMed 

Google Scholar 
Peterson, A. A. & Liu, D. R. Small-molecule discovery through DNA-encoded libraries. Nat. Rev. Drug Discov. 22, 699–722 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chan, W. C., Sharifzadeh, S., Buhrlage, S. J. & Marto, J. A. Chemoproteomic methods for covalent drug discovery. Chem. Soc. Rev. 50, 8361–8381 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Spradlin, J. N., Zhang, E. & Nomura, D. K. Reimagining druggability using chemoproteomic platforms. Acc. Chem. Res. 54, 1801–1813 (2021).Article 
CAS 
PubMed 

Google Scholar 
Cuesta, A. & Taunton, J. Lysine-targeted inhibitors and chemoproteomic probes. Annu. Rev. Biochem. 88, 365–381 (2019).Article 
CAS 
PubMed 

Google Scholar 
Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10, 307–317 (2011).Article 
CAS 
PubMed 

Google Scholar 
Boike, L., Henning, N. J. & Nomura, D. K. Advances in covalent drug discovery. Nat. Rev. Drug Discov. 21, 881–898 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cross, D. A. et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 4, 1046–1061 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, M. L. et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 369, 507–516 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abdeldayem, A., Raouf, Y. S., Constantinescu, S. N., Moriggl, R. & Gunning, P. T. Advances in covalent kinase inhibitors. Chem. Soc. Rev. 49, 2617–2687 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hong, D. S. et al. KRAS(G12C) inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med. 383, 1207–1217 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vinogradova, E. V. et al. An activity-guided map of electrophile-cysteine interactions in primary human T cells. Cell 182, 1009–1026 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abbasov, M. E. et al. A proteome-wide atlas of lysine-reactive chemistry. Nat. Chem. 13, 1081–1092 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, C., Weerapana, E., Blewett, M. M. & Cravatt, B. F. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat. Methods 11, 79–85 (2014).Article 
PubMed 

Google Scholar 
Chen, Y. et al. Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes. Nat. Chem. 15, 1616–1625 (2023).Article 
CAS 
PubMed 

Google Scholar 
Maurais, A. J. & Weerapana, E. Reactive-cysteine profiling for drug discovery. Curr. Opin. Chem. Biol. 50, 29–36 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).Article 
CAS 
PubMed 

Google Scholar 
Kuljanin, M. et al. Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries. Nat. Biotechnol. 39, 630–641 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Grossman, E. A. et al. Covalent ligand discovery against druggable hotspots targeted by anti-cancer natural products. Cell Chem. Biol. 24, 1368–1376.e4 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lazear, M. R. et al. Proteomic discovery of chemical probes that perturb protein complexes in human cells. Mol. Cell 83, 1725–1742 (2023).Article 
CAS 
PubMed 

Google Scholar 
Tao, Y. et al. Targeted protein degradation by electrophilic PROTACs that stereoselectively and site-specifically engage DCAF1. J. Am. Chem. Soc. 144, 18688–18699 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Feldman, H. C. et al. Selective inhibitors of SARM1 targeting an allosteric cysteine in the autoregulatory ARM domain. Proc. Natl Acad. Sci. USA 119, e2208457119 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kathman, S. G. et al. Remodeling oncogenic transcriptomes by small molecules targeting NONO. Nat. Chem. Biol. 19, 825–836 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boike, L. et al. Discovery of a functional covalent ligand targeting an intrinsically disordered cysteine within MYC. Cell Chem. Biol. 28, 4–13.e17 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kavanagh, M. E. et al. Selective inhibitors of JAK1 targeting an isoform-restricted allosteric cysteine. Nat. Chem. Biol. 18, 1388–1398 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Darabedian, N. et al. Depletion of creatine phosphagen energetics with a covalent creatine kinase inhibitor. Nat. Chem. Biol. 19, 815–824 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bar-Peled, L. et al. Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. Cell 171, 696–709.e23 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, X., Crowley, V. M., Wucherpfennig, T. G., Dix, M. M. & Cravatt, B. F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol. 15, 737–746 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, X. et al. DCAF11 supports targeted protein degradation by electrophilic proteolysis-targeting chimeras. J. Am. Chem. Soc. 143, 5141–5149 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ward, C. C. et al. Covalent ligand screening uncovers a RNF4 E3 ligase recruiter for targeted protein degradation applications. ACS Chem. Biol. 14, 2430–2440 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gao, Z., Chang, C., Yang, J., Zhu, Y. & Fu, Y. AP3: an advanced proteotypic peptide predictor for targeted proteomics by incorporating peptide digestibility. Anal. Chem. 91, 8705–8711 (2019).Article 
CAS 
PubMed 

Google Scholar 
Lanning, B. R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol. 10, 760–767 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Niessen, S. et al. Proteome-wide map of targets of T790M-EGFR-directed covalent inhibitors. Cell Chem. Biol. 24, 1388–1400 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Warren, A. et al. Global computational alignment of tumor and cell line transcriptional profiles. Nat. Commun. 12, 22 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).Article 
CAS 

Google Scholar 
Tornoe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).Speers, A. E., Adam, G. C. & Cravatt, B. F. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003).Teng, M., Zhou, S., Cai, C., Lupien, M. & He, H. H. Pioneer of prostate cancer: past, present and the future of FOXA1. Protein Cell 12, 29–38 (2021).Article 
CAS 
PubMed 

Google Scholar 
Vinogradova, E. V. & Cravatt, B. F. Multiplexed proteomic profiling of cysteine reactivity and ligandability in human T cells. STAR Protoc. 2, 100458 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Serrano, G., Guruceaga, E. & Segura, V. DeepMSPeptide: peptide detectability prediction using deep learning. Bioinformatics 36, 1279–1280 (2020).Article 
CAS 
PubMed 

Google Scholar 
Li, H. et al. Assigning functionality to cysteines by base editing of cancer dependency genes. Nat. Chem. Biol. 19, 1320–1330 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Taylor, C. A. T. et al. Domain-swapping switch point in Ste20 protein kinase SPAK. Biochemistry 54, 5063–5071 (2015).Article 
CAS 
PubMed 

Google Scholar 
Davis, I. & Liu, A. What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? Expert Rev. Neurother. 15, 719–721 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tan, L., Yu, J. T. & Tan, L. The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J. Neurol. Sci. 323, 1–8 (2012).Article 
CAS 
PubMed 

Google Scholar 
Dewulf, J. P. et al. Urine metabolomics links dysregulation of the tryptophan-kynurenine pathway to inflammation and severity of COVID-19. Sci. Rep. 12, 9959 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thomas, T. et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight 5, e140327 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).Article 
CAS 
PubMed 

Google Scholar 
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hu, L. J. et al. A simple HPLC-MS/MS method for determination of tryptophan, kynurenine and kynurenic acid in human serum and its potential for monitoring antidepressant therapy. J. Anal. Toxicol. 41, 37–44 (2017).Article 
CAS 
PubMed 

Google Scholar 
Dobrovolsky, V. N. et al. Effect of arylformamidase (kynurenine formamidase) gene inactivation in mice on enzymatic activity, kynurenine pathway metabolites and phenotype. Biochim. Biophys. Acta 1724, 163–172 (2005).Article 
CAS 
PubMed 

Google Scholar 
Bachovchin, D. A. et al. Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening. Proc. Natl Acad. Sci. USA 107, 20941–20946 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Westhorpe, F. G., Tighe, A., Lara-Gonzalez, P. & Taylor, S. S. p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J. Cell Sci. 124, 3905–3916 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hagan, R. S. et al. p31comet acts to ensure timely spindle checkpoint silencing subsequent to kinetochore attachment. Mol. Biol. Cell 22, 4236–4246 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lok, T. M. et al. Mitotic slippage is determined by p31comet and the weakening of the spindle-assembly checkpoint. Oncogene 39, 2819–2834 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, M. et al. p31comet blocks Mad2 activation through structural mimicry. Cell 131, 744–755 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abdel-Salam, G. M. H. et al. Biallelic MAD2L1BP (p31comet) mutation is associated with mosaic aneuploidy and juvenile granulosa cell tumors. JCI Insight 8, e170079 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Browne, C. M. et al. A chemoproteomic strategy for direct and proteome-wide covalent inhibitor target-site identification. J. Am. Chem. Soc. 141, 191–203 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wozniak, J. M. et al. Enhanced mapping of small-molecule binding sites in cells. Nat. Chem. Biol. 20, 823–834 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mons, E., Kim, R. Q. & Mulder, M. P. C. Technologies for direct detection of covalent protein–drug adducts. Pharmaceuticals 16, 547 (2023).Giansanti, P., Tsiatsiani, L., Low, T. Y. & Heck, A. J. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat. Protoc. 11, 993–1006 (2016).Article 
CAS 
PubMed 

Google Scholar 
Abegg, D. et al. Chemoproteomic profiling by cysteine fluoroalkylation reveals myrocin G as an inhibitor of the nonhomologous end joining DNA repair pathway. J. Am. Chem. Soc. 143, 20332–20342 (2021).Article 
CAS 
PubMed 

Google Scholar 
Tessier, R. et al. Ethynylation of cysteine residues: from peptides to proteins in vitro and in living cells. Angew. Chem. Int. Ed. 59, 10961–10970 (2020).Article 
CAS 

Google Scholar 
Motiwala, H. F., Kuo, Y. H., Stinger, B. L., Palfey, B. A. & Martin, B. R. Tunable heteroaromatic sulfones enhance in-cell cysteine profiling. J. Am. Chem. Soc. 142, 1801–1810 (2020).Article 
CAS 
PubMed 

Google Scholar 
Cuesta, A., Wan, X., Burlingame, A. L. & Taunton, J. Ligand conformational bias drives enantioselective modification of a surface-exposed lysine on Hsp90. J. Am. Chem. Soc. 142, 3392–3400 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y. et al. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs. Nat. Chem. 11, 1113–1123 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jacobs, A. T. & Marnett, L. J. Systems analysis of protein modification and cellular responses induced by electrophile stress. Acc. Chem. Res. 43, 673–683 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Y. et al. Expanding the ligandable proteome by paralog hopping with covalent probes. Preprint at bioRxiv https://doi.org/10.1101/2024.01.18.576274 (2024).Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles