Harnessing the potential of acyl triazoles in bifunctional cobalt-catalyzed radical cross-coupling reactions

Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 59, 74–108 (2020).Article 
ADS 
CAS 

Google Scholar 
Studer, A. The persistent radical effect in organic synthesis. Chemistry 7, 1159–1164 (2001).Article 
CAS 
PubMed 

Google Scholar 
Huang, J. & Chen, Z. Radical decyanations of unactivated carbon–CN bonds: recent achievements and mechanistic studies. Adv. Synth. Catal. 365, 2058–2091 (2023).Article 
CAS 

Google Scholar 
Tong, S., Li, K., Ouyang, X., Song, R. & Li, J. Recent advances in the radical-mediated decyanative alkylation of cyano(hetero)arene. Green. Synth. Catal. 2, 145–155 (2021).Article 

Google Scholar 
Wang, G. et al. Metal-free synthesis of C-4 substituted pyridine derivatives using pyridine-boryl radicals via a radical addition/coupling mechanism: a combined computational and experimental study. J. Am. Chem. Soc. 139, 3904–3910 (2017).Article 
CAS 
PubMed 

Google Scholar 
Liu, K., Schwenzer, M. & Studer, A. Radical NHC catalysis. ACS Catal. 12, 11984–11999 (2022).Article 
CAS 

Google Scholar 
Bay, A. V. & Scheidt, K. A. Single-electron carbene catalysis in redox processes. Trends Chem. 4, 277–290 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ishii, T., Nagao, K. & Ohmiya, H. Recent advances in N-heterocyclic carbene-based radical catalysis. Chem. Sci. 11, 5630–5636 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ohmiya, H. N-heterocyclic carbene-based catalysis enabling cross-coupling reactions. ACS Catal. 10, 6862–6869 (2020).Article 
CAS 

Google Scholar 
Chen, K.-Q., Sheng, H., Liu, Q., Shao, P.-L. & Chen, X.-Y. N-heterocyclic carbene-catalyzed radical reactions. Sci. China Chem. 64, 7–16 (2021).Article 
CAS 

Google Scholar 
Liu, C., Zhang, Z., Zhao, L.-L., Bertrand, G. & Yan, X. Mesoionic carbene-catalyzed formyl alkylation of aldehydes. Angew. Chem. Int. Ed. 62, e202303478 (2023).Article 
CAS 

Google Scholar 
Tan, C.-Y., Kim, M. & Hong, S. Photoinduced electron transfer from xanthates to acyl azoliums: divergent ketone synthesis via N‐heterocyclic carbene catalysis. Angew. Chem. Int. Ed. 62, e202306191 (2023).Article 
CAS 

Google Scholar 
Kim, I., Im, H., Lee, H. & Hong, S. N-heterocyclic carbene-catalyzed deaminative cross-coupling of aldehydes with Katritzky pyridinium salts. Chem. Sci. 11, 3192–3197 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ishii, T., Kakeno, Y., Nagao, K. & Ohmiya, H. N-heterocyclic carbene-catalyzed decarboxylative alkylation of aldehydes. J. Am. Chem. Soc. 141, 3854–3858 (2019).Article 
CAS 
PubMed 

Google Scholar 
Du, H.-W., Du, Y.-D., Zeng, X.-W. & Shu, W. Access to trifluoromethylketones from alkyl bromides and trifluoroacetic anhydride by photocatalysis. Angew. Chem. Int. Ed. 62, e202308732 (2023).Article 
CAS 

Google Scholar 
Liu, M.-S. & Shu, W. Catalytic, metal-free amide synthesis from aldehydes and imines enabled by a dual-catalyzed umpolung strategy under redox-neutral conditions. ACS Catal. 10, 12960–12966 (2020).Article 
CAS 

Google Scholar 
Liu, M.-S., Min, L., Chen, B.-H. & Shu, W. Dual catalysis relay: coupling of aldehydes and alkenes enabled by visible-light and NHC-catalyzed cross-double C–H functionalizations. ACS Catal. 11, 9715–9721 (2021).Article 
CAS 

Google Scholar 
Zhang, L. & Meggers, E. Steering asymmetric Lewis acid catalysis exclusively with octahedral metal-centered chirality. Acc. Chem. Res. 50, 320–330 (2017).Article 
CAS 
PubMed 

Google Scholar 
Cao, S. & Hong, S. Visible light‐induced enantioselective radical reactions catalyzed by redox‐active chiral Lewis acids. ChemCatChem 16, e202301606 (2024).Article 
CAS 

Google Scholar 
Huang, C., Tao, Y., Cao, X., Zhou, C. & Lu, Q. Asymmetric paired electrocatalysis: enantioselective olefin–sulfonylimine coupling. J. Am. Chem. Soc. 146, 1984–1991 (2024).Article 
CAS 
PubMed 

Google Scholar 
Onneken, C. et al. Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis. Nature 621, 753–759 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, Y., Lei, M. & Gong, L. Photocatalytic regio- and stereoselective C(sp3)–H functionalization of benzylic and allylic hydrocarbons as well as unactivated alkanes. Nat. Catal. 2, 1016–1026 (2019).Article 
CAS 

Google Scholar 
Ma, J. et al. Visible-light-activated asymmetric β-C–H functionalization of acceptor-substituted ketones with 1,2-dicarbonyl. Compd. J. Am. Chem. Soc. 139, 17245–17248 (2017).Article 
ADS 
CAS 

Google Scholar 
Zhang, C. et al. Catalytic α-deracemization of ketones enabled by photoredox deprotonation and enantioselective protonation. J. Am. Chem. Soc. 143, 13393–13400 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhou, Z., Li, Y., Han, B., Gong, L. & Meggers, E. Enantioselective catalytic β-amination through proton-coupled electron transfer followed by stereocontrolled radical–radical coupling. Chem. Sci. 8, 5757–5763 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cao, S., Kim, D., Lee, W. & Hong, S. Photocatalytic enantioselective hydrosulfonylation of α,β-unsaturated carbonyls with sulfonyl chlorides. Angew. Chem. Int. Ed. 62, e202312780 (2023).Article 
CAS 

Google Scholar 
Zhu, J. L., Laws, S. W., Rourke, M. J. & Scheidt, K. A. Radical coupling of β-ketoesters and amides promoted by Brønsted/Lewis acids. Green. Synth. Catal. 1, 70–74 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
McDonald, B. R. & Scheidt, K. A. Intermolecular reductive couplings of arylidene malonates via Lewis acid/photoredox cooperative catalysis. Org. Lett. 20, 6877–6881 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zhou, Z. et al. Enantioconvergent photoredox radical-radical coupling catalyzed by a chiral-at-rhodium complex. Sci. China Chem. 62, 1512–1518 (2019).Article 
CAS 

Google Scholar 
Wang, C. et al. Asymmetric radical-radical cross-coupling through visible-light-activated iridium catalysis. Angew. Chem. Int. Ed. 55, 685–688 (2016).Article 
ADS 
CAS 

Google Scholar 
Ma, J., Harms, K. & Meggers, E. Enantioselective rhodium/ruthenium photoredox catalysis en route to chiral 1,2-aminoalcohols. Chem. Commun. 52, 10183–10186 (2016).Article 
CAS 

Google Scholar 
Tan, Z., Zhu, S., Liu, Y. & Feng, X. Photoinduced chemo-, site- and stereoselective α-C(sp3)-H functionalization of sulfides. Angew. Chem. Int. Ed. 61, e202203374 (2022).Article 
ADS 
CAS 

Google Scholar 
Zhou, X.-S. et al. Asymmetric [3 + 2] photocycloaddition of β-keto esters and vinyl azides by dual photoredox/nickel catalysis. J. Am. Chem. Soc. 145, 12233–12243 (2023).Article 
CAS 
PubMed 

Google Scholar 
Cahiez, G. & Moyeux, A. Cobalt-catalyzed cross-coupling reactions. Chem. Rev. 110, 1435–1462 (2010).Article 
CAS 
PubMed 

Google Scholar 
Kojima, M. & Matsunaga, S. The merger of photoredox and cobalt catalysis. Trends Chem. 2, 410–426 (2020).Article 
CAS 

Google Scholar 
von Münchow, T., Dana, S., Xu, Y., Yuan, B. & Ackermann, L. Enantioselective electrochemical cobalt-catalyzed aryl C–H activation reactions. Science 379, 1036–1042 (2023).Article 
ADS 

Google Scholar 
Jiang, H. et al. Photoinduced cobalt-catalyzed desymmetrization of dialdehydes to access axial chirality. J. Am. Chem. Soc. 145, 6944–6952 (2023).Article 
CAS 
PubMed 

Google Scholar 
Jiang, X. et al. Construction of axial chirality via asymmetric radical trapping by cobalt under visible light. Nat. Catal. 5, 788–797 (2022).Article 
CAS 

Google Scholar 
Li, Y. et al. Cobalt-catalysed enantioselective C(sp3)–C(sp3) coupling. Nat. Catal. 4, 901–911 (2021).Article 
CAS 

Google Scholar 
Li, Y.-L., Zhang, S.-Q., Chen, J. & Xia, J.-B. Highly regio- and enantioselective reductive coupling of alkynes and aldehydes via photoredox cobalt dual catalysis. J. Am. Chem. Soc. 143, 7306–7313 (2021).Article 
CAS 
PubMed 

Google Scholar 
Jiang, X. et al. Photoassisted cobalt-catalyzed asymmetric reductive Grignard-type addition of aryl iodides. J. Am. Chem. Soc. 144, 8347–8354 (2022).Article 
CAS 
PubMed 

Google Scholar 
Xiong, W. et al. Dynamic kinetic reductive conjugate addition for construction of axial chirality enabled by synergistic photoredox/cobalt catalysis. J. Am. Chem. Soc. 145, 7983–7991 (2023).Article 
CAS 
PubMed 

Google Scholar 
Abderrazak, Y., Bhattacharyya, A. & Reiser, O. Visible-light-induced homolysis of earth-abundant metal-substrate complexes: a complementary activation strategy in photoredox catalysis. Angew. Chem. Int. Ed. 60, 21100–21115 (2021).Article 
CAS 

Google Scholar 
Zeng, X.-W., Lin, J.-N. & Shu, W. Hydrogen source tuned regiodivergent asymmetric hydroalkylations of 2-substituted 1,3-dienes with aldehydes by cobalt-catalysis. Angew. Chem. Int. Ed. 63, e202403073 (2024).Article 
CAS 

Google Scholar 
Ren, Y.-F. et al. Direct synthesis of branched amines enabled by dual-catalyzed allylic C─H amination of alkenes with amines. Sci. Adv. 10, eadn1272 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Green, S. A. et al. The high chemofidelity of metal-catalyzed hydrogen atom transfer. Acc. Chem. Res. 51, 2628–2640 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shevick, S. L., Wilson, C. V., Kotesova, S., Kim, D., Holland, P. L. & Shenvi, R. A. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jana, S., Mayerhofer, V. J. & Teskey, C. J. Photo- and electrochemical cobalt catalysed hydrogen atom transfer for the hydrofunctionalisation of alkenes. Angew. Chem. Int. Ed. 62, e202304882 (2023).Article 
CAS 

Google Scholar 
Yan, H., Shan, J.-R. & Shi, L. Photochemical metal‐hydride hydrogen atom transfer mediated radical hydrofunctionalization of dienes and allenes. ChemCatChem 16, e202301344 (2023).Article 

Google Scholar 
van der Puyl, V., McCourt, R. O. & Shenvi, R. A. Cobalt-catalyzed alkene hydrogenation by reductive turnover. Tetrahedron Lett. 72, 153047 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Ai, W., Zhong, R., Liu, X. & Liu, Q. Hydride transfer reactions catalyzed by cobalt complexes. Chem. Rev. 119, 2876–2953 (2019).Article 
CAS 
PubMed 

Google Scholar 
Li, Y., Lu, X. & Fu, Y. Recent advances in cobalt-catalyzed regio- or stereoselective hydrofunctionalization of alkenes and alkynes. CCS Chem. 6, 1130–1156 (2024).Article 
CAS 

Google Scholar 
Shibutani, S., Nagao, K. & Ohmiya, H. A dual cobalt and photoredox catalysis for hydrohalogenation of alkenes. J. Am. Chem. Soc. 146, 4375–4379 (2024).Article 
CAS 
PubMed 

Google Scholar 
Nakagawa, M., Matsuki, Y., Nagao, K. & Ohmiya, H. A triple photoredox/cobalt/brønsted acid catalysis enabling Markovnikov hydroalkoxylation of unactivated alkenes. J. Am. Chem. Soc. 144, 7953–7959 (2022).Article 
CAS 
PubMed 

Google Scholar 
Nakagawa, M., Nagao, K. & Ohmiya, H. γ-Amino C(sp3)–H functionalization of aliphatic amines through a light-driven triple catalysis. ACS Catal. 14, 8005–8012 (2024).Article 
CAS 

Google Scholar 
Takekawa, Y., Nakagawa, M., Nagao, K. & Ohmiya, H. A quadruple catalysis enabling intermolecular branch-selective hydroacylation of styrenes. Chemistry 29, e202301484 (2023).Article 
CAS 
PubMed 

Google Scholar 
Gnaim, S. et al. Cobalt-electrocatalytic HAT for functionalization of unsaturated C-C bonds. Nature 605, 687–695 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kamei, Y. et al. Silane- and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and cobalt-photoredox dual catalysis. Nat. Commun. 12, 966 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mayerhofer, V. J., Lippolis, M. & Teskey, C. J. Dual-catalysed intermolecular reductive coupling of dienes and ketones. Angew. Chem. Int. Ed. 63, e202314870 (2024).Article 
CAS 

Google Scholar 
Qin, J. et al. Photoinduced cobalt catalysis for the reductive coupling of pyridines and dienes enabled by paired single‐electron transfer. Angew. Chem. Int. Ed. 62, e202310639 (2023).Article 
CAS 

Google Scholar 
Bergamaschi, E., Mayerhofer, V. J. & Teskey, C. J. Light-driven cobalt hydride catalyzed hydroarylation of styrenes. ACS Catal. 12, 14806–14811 (2022).Article 
CAS 

Google Scholar 
Suzuki, A. et al. Photocatalytic deuterium atom transfer deuteration of electron-deficient alkenes with high functional group tolerance. Angew. Chem. Int. Ed. 62, e202214433 (2023).Article 
CAS 

Google Scholar 
Liu, J. et al. Co-catalyzed hydrofluorination of alkenes: photocatalytic method development and electroanalytical mechanistic investigation. J. Am. Chem. Soc. 146, 4380–4392 (2024).Article 
CAS 
PubMed 

Google Scholar 
Wu, X. et al. Intercepting hydrogen evolution with hydrogen-atom transfer: electron-initiated hydrofunctionalization of alkenes. J. Am. Chem. Soc. 144, 17783–17791 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lindner, H. et al. Photo- and cobalt-catalyzed synthesis of heterocycles via cycloisomerization of unactivated olefins. Angew. Chem. Int. Ed. 63, e202319515 (2024).Article 
CAS 

Google Scholar 
Gao, S., Wang, C., Yang, J. & Zhang, J. Cobalt-catalyzed enantioselective intramolecular reductive cyclization via electrochemistry. Nat. Commun. 14, 1301 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fang, X., Zhang, N., Chen, S.-C. & Luo, T. Scalable total synthesis of (-)-triptonide: serendipitous discovery of a visible-light-promoted olefin coupling initiated by metal-catalyzed hydrogen atom transfer (MHAT). J. Am. Chem. Soc. 144, 2292–2300 (2022).Article 
CAS 
PubMed 

Google Scholar 
Song, L. et al. Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. Nat. Chem. 12, 747–754 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Waser, J. & Carreira, E. M. Convenient synthesis of alkylhydrazides by the cobalt-catalyzed hydrohydrazination reaction of olefins and azodicarboxylates. J. Am. Chem. Soc. 126, 5676–5677 (2004).Article 
CAS 
PubMed 

Google Scholar 
Gaspar, B. & Carreira, E. M. Cobalt catalyzed functionalization of unactivated alkenes: regioselective reductive C-C bond forming reactions. J. Am. Chem. Soc. 131, 13214–13215 (2009).Article 
CAS 
PubMed 

Google Scholar 
Gaspar, B. & Carreira, E. M. Mild cobalt-catalyzed hydrocyanation of olefins with tosyl cyanide. Angew. Chem. Int. Ed. 46, 4519–4522 (2007).Article 
CAS 

Google Scholar 
Tao, X. et al. Branched-selective hydroacylation of alkenes via photoredox cobalt and N-heterocyclic carbene cooperative triple catalysis. ACS Catal. 12, 15241–15248 (2022).Article 
CAS 

Google Scholar 
Sun, H.-L., Yang, F., Ye, W.-T., Wang, J.-J. & Zhu, R. Dual cobalt and photoredox catalysis enabled intermolecular oxidative hydrofunctionalization. ACS Catal. 10, 4983–4989 (2020).Article 
CAS 

Google Scholar 
Zhang, G. & Zhang, Q. Cobalt-catalyzed HAT reaction for asymmetric hydrofunctionalization of alkenes and nucleophiles. Chem. Catal. 3, 100526 (2023).Article 
CAS 

Google Scholar 
Shevick, S. L., Obradors, C. & Shenvi, R. A. Mechanistic interrogation of Co/Ni-dual catalyzed hydroarylation. J. Am. Chem. Soc. 140, 12056–12068 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Green, S. A., Matos, J. L. M., Yagi, A. & Shenvi, R. A. Branch-selective hydroarylation: iodoarene–olefin cross-coupling. J. Am. Chem. Soc. 138, 12779–12782 (2016).Article 
CAS 
PubMed 

Google Scholar 
Chi, Z. et al. Asymmetric cross-coupling of aldehydes with diverse carbonyl or iminyl compounds by photoredox-mediated cobalt catalysis. J. Am. Chem. Soc. 146, 10857–10867 (2024).Article 
CAS 
PubMed 

Google Scholar 
Wu, X. et al. Modular α-tertiary amino ester synthesis through cobalt-catalysed asymmetric aza-Barbier reaction. Nat. Chem. 16, 398–407 (2024).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zhang, K. et al. Exploration of a chiral cobalt catalyst for visible-light-induced enantioselective radical conjugate addition. Angew. Chem. Int. Ed. 58, 13375–13379 (2019).Article 
CAS 

Google Scholar 
Xia, T. et al. Cobalt-catalyzed asymmetric Aza-Nozaki-Hiyama-Kishi (NHK) reaction of α-imino esters with alkenyl halides. Angew. Chem. Int. Ed. 63, e202316012 (2024).Article 
CAS 

Google Scholar 
Xia, T., Wu, W., Wu, X., Qu, J. & Chen, Y. Cobalt-catalyzed enantioselective reductive α-chloro-carbonyl addition of ketimine to construct the β-Tertiary amino acid analogues. Angew. Chem. Int. Ed. 63, e202318991 (2024).Article 
CAS 

Google Scholar 
Yu, X.-H., Lu, L.-Q., Zhang, Z.-H., Shi, D.-Q. & Xiao, W.-J. Cobalt-catalyzed asymmetric phospha-Michael reaction of diarylphosphine oxides for the synthesis of chiral organophosphorus compounds. Org. Chem. Front. 10, 133–139 (2023).Article 
CAS 

Google Scholar 
Bakulev, V. A. & Dehaen, W. (eds) Chemistry of 1,2,3-Triazoles (Springer International Publishing, 2014).Motornov, V., Pohl, R., Klepetářová, B. & Beier, P. N -Acyl-1,2,3-triazoles – key intermediates in denitrogenative transformations. Chem. Commun. 59, 9364–9367 (2023).Article 
CAS 

Google Scholar 
Xie, H. & Breit, B. Organophotoredox/Ni-cocatalyzed allylation of allenes: regio- and diastereoselective access to homoallylic alcohols. ACS Catal. 12, 3249–3255 (2022).Article 
CAS 

Google Scholar 
Cai, J., Zeng, G., Jiang, K., Luo, H. & Yin, B. Intramolecular cobalt/visible light cocatalyzed reductive coupling of unactivated arenes with unactivated alkenes. Org. Lett. 26, 327–331 (2024).Article 
CAS 
PubMed 

Google Scholar 
Alandini, N. et al. Amide synthesis by nickel/photoredox-catalyzed direct carbamoylation of (Hetero)aryl bromides. Angew. Chem. Int. Ed. 59, 5248–5253 (2020).Article 
CAS 

Google Scholar 
van Leeuwen, T., Buzzetti, L., Perego, L. A. & Melchiorre, P. A redox-active nickel complex that acts as an electron mediator in photochemical Giese reactions. Angew. Chem. Int. Ed. 58, 4953–4957 (2019).Article 

Google Scholar 
Gandolfo, E., Tang, X., Raha Roy, S. & Melchiorre, P. Photochemical asymmetric nickel‐catalyzed acyl cross‐coupling. Angew. Chem. Int. Ed. 58, 16854–16858 (2019).Article 
CAS 

Google Scholar 
Buzzetti, L., Prieto, A., Roy, S. R. & Melchiorre, P. Radical‐based C−C bond‐forming processes enabled by the photoexcitation of 4‐alkyl‐1,4‐dihydropyridines. Angew. Chem. Int. Ed. 56, 15039–15043 (2017).Article 
CAS 

Google Scholar 
Zhang, B. et al. Enantioselective cyanofunctionalization of aromatic alkenes via radical anions. J. Am. Chem. Soc. 146, 1410–1422 (2024).Article 
CAS 
PubMed 

Google Scholar 
Venditto, N. J., Liang, Y. S., El Mokadem, R. K. & Nicewicz, D. A. Ketone–olefin coupling of aliphatic and aromatic carbonyls catalyzed by excited-state acridine radicals. J. Am. Chem. Soc. 144, 11888–11896 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Speckmeier, E., Fischer, T. G. & Zeitler, K. A toolbox approach to construct broadly applicable metal-free catalysts for photoredox chemistry: deliberate tuning of redox potentials and importance of halogens in donor-acceptor cyanoarenes. J. Am. Chem. Soc. 140, 15353–15365 (2018).Article 
CAS 
PubMed 

Google Scholar 
Fang, Y., Liu, T., Chen, L. & Chao, D. Exploiting consecutive photoinduced electron transfer (ConPET) in CO2 photoreduction. Chem. Commun. 58, 7972–7975 (2022).Article 
CAS 

Google Scholar 
MacKenzie, I. A. et al. Discovery and characterization of an acridine radical photoreductant. Nature 580, 76–80 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ghosh, I., Ghosh, T., Bardagi, J. I. & König, B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 346, 725–728 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Xu, J. et al. Unveiling extreme photoreduction potentials of donor–acceptor cyanoarenes to access aryl radicals from aryl chlorides. J. Am. Chem. Soc. 143, 13266–13273 (2021).Article 
CAS 
PubMed 

Google Scholar 
Glaser, F., Kerzig, C. & Wenger, O. S. Multi-photon excitation in photoredox catalysis: concepts, applications, methods. Angew. Chem. Int. Ed. 59, 10266–10284 (2020).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles