Decrease due to pollution in the rhizosphere microbial diversity can be amended by supplementation from adapted plants of another species

Timmusk, S., Behers, L., Muthoni, J., Muraya, A. & Aronsson, A. C. Perspectives and challenges of microbial application for crop improvement. Front. Plant Sci. 8, 49. https://doi.org/10.3389/fpls.2017.00049 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9(5), 1177–1194. https://doi.org/10.1038/ismej.2014.210 (2015).Article 
PubMed 

Google Scholar 
Averill, C. et al. Defending Earth’s terrestrial microbiome. Nat. Microbiol. 7(11), 1717–1725. https://doi.org/10.1038/s41564-022-01228-3 (2022).Article 
CAS 
PubMed 

Google Scholar 
Timmusk, S, Pall T, Raz S, Fetsiukh A, Nevo E (2023) The potential for plant growth-promoting bacteria to impact crop productivity in future agricultural systems is linked to understanding the principles of microbial ecology. Front. Microbiol. 10.3389fmicb.2023.1141862Batista, B. D. & Singh, B. K. Realities and hopes in the application of microbial tools in agriculture. Microb. Biotechnol. 14(4), 1258–1268. https://doi.org/10.1111/1751-7915.13866 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Hiltner, L. Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderden berucksichtigung und Brache. Arb Dtsch Landwirtsch Gesellschaft 98, 59–78 (1904).
Google Scholar 
Ray, P., Lakshmanan, V., Labbe, J. L. & Craven, K. D. Microbe to microbiome: A paradigm shift in the application of microorganisms for sustainable agriculture. Front. Microbiol. 11, 622926. https://doi.org/10.3389/fmicb.2020.622926 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Bashan, Y. Inoculants of plant growth promoting bacteria for use in agriculture. Biotechnol. Adv. 16(4), 729–750 (1998).Article 
CAS 

Google Scholar 
Glick, B. R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica. 2012, 963–401. https://doi.org/10.6064/2012/963401 (2012).Article 

Google Scholar 
de-Bashan L, Hernandez J, Bashan Y. The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—A comprehensive evaluation. Appl. Soil Ecol. https://doi.org/10.1016/japsoil201109003. 2012Timmusk, S. & Wagner, E. G. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A possible connection between biotic and abiotic stress responses. Mol. Plant Microbe Interact. 12(11), 951–959. https://doi.org/10.1094/MPMI.1999.12.11.951 (1999).Article 
CAS 
PubMed 

Google Scholar 
Timmusk, S. et al. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles. PLoS One. 9(5), e96086. https://doi.org/10.1371/journal.pone.0096086 (2014).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sonawane, J. M., Rai, A. K., Sharma, M., Tripathi, M. & Prasad, R. Microbial biofilms: Recent advances and progress in environmental bioremediation. Sci. Total Environ. 824, 153843. https://doi.org/10.1016/j.scitotenv.2022.153843 (2022).Article 
CAS 
PubMed 

Google Scholar 
Tufail, M. A. et al. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. Sci. Total Environ. 850, 157961. https://doi.org/10.1016/j.scitotenv.2022.157961 (2022).Article 
CAS 
PubMed 

Google Scholar 
Orozco-Mosqueda, M. D. C., Fadiji, A. E., Babalola, O. O., Glick, B. R. & Santoyo, G. Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol. Res. 263, 127137. https://doi.org/10.1016/j.micres.2022.127137 (2022).Article 
CAS 
PubMed 

Google Scholar 
Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. D. C. & Glick, B. R. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology (Basel). https://doi.org/10.3390/biology10060475 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA. 115(25), 6506–6511. https://doi.org/10.1073/pnas.1711842115 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Timmusk S, Conrad J, Niinemets Y, Nevo E, Behers L, Bergqvist j, et al. Managing plant stress in the era of climate change: Realising the global sustainable development goals. http://www.global-engage.com/agricultural-biotechnology/managing-plant-stress-in-the-era-of-climate-change-realising-global-sustainable-development-goals/ed2020.Kaminsky, L. M., Trexler, R. V., Malik, R. J., Hockett, K. L. & Bell, T. H. The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol. 37(2), 140–151. https://doi.org/10.1016/j.tibtech.2018.11.011 (2019).Article 
CAS 
PubMed 

Google Scholar 
Timmusk S, de-Bashan L. Microbiome: A tool for plant stress management in future production systems. Stresses. (2022). https://doi.org/10.3390/stresses2020014.Timmusk, S., Seisenbaeva, G. A. & Behers, L. Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria. Nat. Sci. Rep. https://doi.org/10.1038/s41598-017-18939-x (2018).Article 

Google Scholar 
Oyserman, B. O., Medema, M. H. & Raaijmakers, J. M. Road MAPs to engineer host microbiomes. Curr. Opin. Microbiol. 43, 46–54. https://doi.org/10.1016/j.mib.2017.11.023 (2018).Article 
CAS 
PubMed 

Google Scholar 
Dini-Andreote, F. & Raaijmakers, J. M. Embracing community ecology in plant microbiome research. Trends Plant Sci. 23(6), 467–469. https://doi.org/10.1016/j.tplants.2018.03.013 (2018).Article 
CAS 
PubMed 

Google Scholar 
Trivedi, P., Mattupalli, C., Eversole, K. & Leach, J. E. Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytol. 230(6), 2129–2147. https://doi.org/10.1111/nph.17319 (2021).Article 
PubMed 

Google Scholar 
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 18(11), 607–621. https://doi.org/10.1038/s41579-020-0412-1 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA. 111(14), 5266–5270. https://doi.org/10.1073/pnas.1320054111 (2014).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abbas, M. et al. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Sci. Total Environ. 626, 1295–1309. https://doi.org/10.1016/j.scitotenv.2018.01.066 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Baldassarre, L., Ying, H., Reitzel, A. M., Franzenburg, S. & Fraune, S. Microbiota mediated plasticity promotes thermal adaptation in the sea anemone Nematostella vectensis. Nat. Commun. 13(1), 3804. https://doi.org/10.1038/s41467-022-31350-z (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Delannoy-Bruno, O. et al. An approach for evaluating the effects of dietary fiber polysaccharides on the human gut microbiome and plasma proteome. Proc. Natl. Acad. Sci. USA. 119(20), e2123411119. https://doi.org/10.1073/pnas.2123411119 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fetsiukh A, Bunio L, Patsula O, Timmusk S, Terek O. Content of enzymatic and nonenzymatic antioxidants in Salix viminalis L. grown on the stebnyk tailing. Acta Agrobotanica. 75 (2022).Mokryi V, Petrushka I, Dyakiv V, Dzhumelia E, Salamon I (2023) Information supply on hydrotechnical reconstruction concept of Stebnyk tailing storage (Ukraine). Environ. Eng. Environ. Technol. 10.129.12/27197050/156977.Timmusk, S. et al. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One. 6(3), e17968. https://doi.org/10.1371/journal.pone.0017968 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abdollahzadeh, T. et al. Phytoremediation of petroleum-contaminated soil by Salicornia: From PSY activity to physiological and morphological communications. Environ. Technol. 40(21), 2789–2801. https://doi.org/10.1080/09593330.2018.1453551 (2019).Article 
CAS 
PubMed 

Google Scholar 
Hrynkiewicz, K., Patz, S. & Ruppel, S. Salicornia europaea L. as an underutilized saline-tolerant plant inhabited by endophytic diazotrophs. J. Adv. Res. 19, 49–56. https://doi.org/10.1016/j.jare.2019.05.002 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fetsiukh A, Buno L, Patsula O, Terek O. Accumulation of heavy metals by Salix viminalis plants under growing at the substrate from Stebnyk tailings. Series Biology; Visnyk of the Lviv University. 2019;(81):96–110. https://doi.org/10.30970/vbi.2019.81.11.Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79(17), 5112–5120. https://doi.org/10.1128/AEM.01043-13 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Burkner, P. C., Doebler, P. & Holling, H. Optimal design of the Wilcoxon–Mann–Whitney-test. Biom. J. 59(1), 25–40. https://doi.org/10.1002/bimj.201600022 (2017).Article 
MathSciNet 
PubMed 

Google Scholar 
Timmusk, S. & Zucca, C. The plant microbiome as a resource to increase crop productivity and soil resilience: A systems approach. J. Cameroon Acad. Sci. https://doi.org/10.4314/jcasv14i32 (2019).Article 

Google Scholar 
Desale, P., Patel, B., Singh, S., Malhotra, A. & Nawani, N. Plant growth promoting properties of Halobacillus sp. and Halomonas sp. in presence of salinity and heavy metals. J. Basic Microbiol. 54(8), 781–791. https://doi.org/10.1002/jobm.201200778 (2014).Article 
CAS 
PubMed 

Google Scholar 
Mukherjee, P., Mitra, A. & Roy, M. Halomonas rhizobacteria of avicennia marina of indian sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production. Front. Microbiol. 10, 1207. https://doi.org/10.3389/fmicb.2019.01207 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Saha, L., Tiwari, J., Bauddh, K. & Ma, Y. Recent developments in microbe-plant-based bioremediation for tackling heavy metal-polluted soils. Front. Microbiol. 12, 731723. https://doi.org/10.3389/fmicb.2021.731723 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Haque, S. et al. Functional microbiome strategies for the bioremediation of petroleum-hydrocarbon and heavy metal contaminated soils: A review. Sci. Total Environ. 833, 155222. https://doi.org/10.1016/j.scitotenv.2022.155222 (2022).Article 
CAS 
PubMed 

Google Scholar 
Raklami, A., Meddich, A., Oufdou, K. & Baslam, M. Plants-microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23095031 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Sharma, P., Singh, S. P., Iqbal, H. M. N. & Tong, Y. W. Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability. Environ. Res. 211, 113102. https://doi.org/10.1016/j.envres.2022.113102 (2022).Article 
CAS 
PubMed 

Google Scholar 
Prosser, J. I. et al. The role of ecological theory in microbial ecology. Nat. Rev. Microbiol. 5(5), 384–392. https://doi.org/10.1038/nrmicro1643 (2007).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles