Untangling the chemical complexity of plastics to improve life cycle outcomes

Aurisano, N., Weber, R. & Fantke, P. Enabling a circular economy for chemicals in plastics. Curr. Opin. Green. Sustain. Chem. 31, 100513 (2021).Article 
CAS 

Google Scholar 
Wiesinger, H., Wang, Z. & Hellweg, S. Deep dive into plastic monomers, additives, and processing aids. Environ. Sci. Technol. 55, 9339–9351 (2021).Article 
CAS 
PubMed 

Google Scholar 
Carney Almroth, B., Dey, T., Karlsson, T. & Wang, M. Chemical simplification and tracking in plastics. Science 382, 525 (2023).Article 
PubMed 

Google Scholar 
Zimmermann, L. et al. Plastic products leach chemicals that induce in vitro toxicity under realistic use conditions. Environ. Sci. Technol. 55, 11814–11823 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dey, T. et al. Global plastic treaty should address chemicals. Science 378, 841–842 (2022).Article 
CAS 
PubMed 

Google Scholar 
Landrigan, P. J. et al. The Minderoo-Monaco Commission on Plastics and Human Health. Ann. Glob. Health 89, 23 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Maddela, N. R., Kakarla, D., Venkateswarlu, K. & Megharaj, M. Additives of plastics: entry into the environment and potential risks to human and ecological health. J. Environ. Manag. 348, 119364 (2023).Article 
CAS 

Google Scholar 
Ragaert, K. et al. Clarifying European terminology in plastics recycling. Curr. Opin. Green. Sustain. Chem. 44, 100871 (2023).Article 

Google Scholar 
Brouwer, M. T., Alvarado Chacon, F. & Thoden Van Velzen, E. U. Effect of recycled content and rPET quality on the properties of PET bottles, part III: modelling of repetitive recycling. Packag. Technol. Sci. 33, 373–383 (2020).Article 
CAS 

Google Scholar 
Gerassimidou, S. et al. Unpacking the complexity of the PET drink bottles value chain: a chemicals perspective. J. Hazard. Mater. 430, 128410 (2022).Article 
CAS 
PubMed 

Google Scholar 
Geueke, B., Phelps, D. W., Parkinson, L. V. & Muncke, J. Hazardous chemicals in recycled and reusable plastic food packaging. Camb. Prisms Plast. 1, 1–43 (2023).Article 

Google Scholar 
Global Plastics Outlook: Policy Scenarios to 2060 (OECD, 2022).Kuczenski, B. & Geyer, R. PET bottle reverse logistics — environmental performance of California’s CRV program. Int. J. Life Cycle Assess. 18, 456–471 (2013).Article 
CAS 

Google Scholar 
Register, K. Littered Bottles and Cans: Higher in Virginia Than in States with Bottle Bills (Clean Virginia Waterways, Longwood University, 2020).Marturano, V., Cerruti, P. & Ambrogi, V. Polymer additives. Phys. Sci. Rev. https://doi.org/10.1515/9783110468281-005 (2017).Article 

Google Scholar 
Zweifel, H., Maier, R. D. & Schiller, M. Plastics Additives Handbook 6th edn (Hanser, 2009).Strong, A. B. Plastics: Materials and Processing (Pearson Prentice Hall, 2006).Li, H. et al. Expanding plastics recycling technologies: chemical aspects, technology status and challenges. Green Chem. 24, 8899–9002 (2022).Article 
CAS 

Google Scholar 
Westlie, A. H. et al. Polyolefin innovations toward circularity and sustainable alternatives. Macromol. Rapid Commun. 43, 2200492 (2022).Article 
CAS 

Google Scholar 
Schyns, Z. O. G. & Shaver, M. P. Mechanical recycling of packaging plastics: a review. Macromol. Rapid Commun. 42, 2000415 (2021).Article 
CAS 

Google Scholar 
Liu, X., Gao, C., Sangwan, P., Yu, L. & Tong, Z. Accelerating the degradation of polyolefins through additives and blending. J. Appl. Polym. Sci. 131, app.40750 (2014).Article 

Google Scholar 
Selke, S. et al. Evaluation of biodegradation-promoting additives for plastics. Environ. Sci. Technol. 49, 3769–3777 (2015).Article 
CAS 
PubMed 

Google Scholar 
Napper, I. E. & Thompson, R. C. Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period. Environ. Sci. Technol. 53, 4775–4783 (2019).Article 
CAS 
PubMed 

Google Scholar 
Teuten, E. L. et al. Transport and release of chemicals from plastics to the environment and to wildlife. Phil. Trans. R. Soc. Lond. B 364, 2027–2045 (2009).Article 
CAS 

Google Scholar 
Ziccardi, L. M., Edgington, A., Hentz, K., Kulacki, K. J. & Kane Driscoll, S. Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: a state-of-the-science review. Environ. Toxicol. Chem. 35, 1667–1676 (2016).Article 
CAS 
PubMed 

Google Scholar 
Bridson, J. H., Gaugler, E. C., Smith, D. A., Northcott, G. L. & Gaw, S. Leaching and extraction of additives from plastic pollution to inform environmental risk: a multidisciplinary review of analytical approaches. J. Hazard. Mater. 414, 125571 (2021).Article 
CAS 
PubMed 

Google Scholar 
Muncke, J. et al. Scientific challenges in the risk assessment of food contact materials. Environ. Health Perspect. 125, 095001 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Hinton, Z. R. et al. Antioxidant-induced transformations of a metal-acid hydrocracking catalyst in the deconstruction of polyethylene waste. Green Chem. 24, 7332–7339 (2022).Article 
CAS 

Google Scholar 
Lithner, D., Larsson, Å. & Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total. Environ. 409, 3309–3324 (2011).Article 
CAS 
PubMed 

Google Scholar 
Groh, K. J. et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci. Total. Environ. 651, 3253–3268 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z. & Praetorius, A. Integrating a chemicals perspective into the global plastic treaty. Environ. Sci. Technol. Lett. 9, 1000–1006 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kahn, L. G., Philippat, C., Nakayama, S. F., Slama, R. & Trasande, L. Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol. 8, 703–718 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barrick, A. et al. Plastic additives: challenges in ecotox hazard assessment. PeerJ 9, e11300 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Geueke, B. et al. Systematic evidence on migrating and extractable food contact chemicals: most chemicals detected in food contact materials are not listed for use. Crit. Rev. Food Sci. Nutr. 63, 9425–9435 (2022).Article 
PubMed 

Google Scholar 
Lynch, J. M., Knauer, K. & Shaw, K. R. in Plastics and the Ocean (ed. Andrady, A. L.) 43–76 (Wiley, 2022).Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E. & Purnell, P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199 (2018).Article 
CAS 
PubMed 

Google Scholar 
Hermabessiere, L. et al. Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere 182, 781–793 (2017).Article 
CAS 
PubMed 

Google Scholar 
Rummel, C. D. et al. Effects of leachates from UV-weathered microplastic in cell-based bioassays. Environ. Sci. Technol. 53, 9214–9223 (2019).Article 
CAS 
PubMed 

Google Scholar 
Gunaalan, K., Fabbri, E. & Capolupo, M. The hidden threat of plastic leachates: a critical review on their impacts on aquatic organisms. Water Res. 184, 116170 (2020).Article 
CAS 
PubMed 

Google Scholar 
Amaneesh, C. et al. Gross negligence: impacts of microplastics and plastic leachates on phytoplankton community and ecosystem dynamics. Environ. Sci. Technol. 57, 5–24 (2023).Article 
CAS 
PubMed 

Google Scholar 
Karapanagioti, H. K. & Werner, D. in Hazardous Chemicals Associated with Plastics in the Marine Environment. Handbook of Environmental Chemistry Vol. 78 (eds Takada, H. & Karapanagioti, H. K.) 205–220 (Springer, 2019).Tian, Z. et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 371, 185–189 (2021).Article 
CAS 
PubMed 

Google Scholar 
Turner, A., Wallerstein, C., Arnold, R. & Webb, D. Marine pollution from pyroplastics. Sci. Total. Environ. 694, 133610 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zimmermann, L., Dierkes, G., Ternes, T. A., Völker, C. & Wagner, M. Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environ. Sci. Technol. 53, 11467–11477 (2019).Article 
CAS 
PubMed 

Google Scholar 
Escher, B. I., Stapleton, H. M. & Schymanski, E. L. Tracking complex mixtures of chemicals in our changing environment. Science 367, 388–392 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Scholz, S. et al. The eco‐exposome concept: supporting an integrated assessment of mixtures of environmental chemicals. Environ. Toxicol. Chem. 41, 30–45 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Caporale, N. et al. From cohorts to molecules: adverse impacts of endocrine disrupting mixtures. Science 375, eabe8244 (2022).Article 
CAS 
PubMed 

Google Scholar 
Martin, O. et al. Ten years of research on synergisms and antagonisms in chemical mixtures: a systematic review and quantitative reappraisal of mixture studies. Environ. Int. 146, 106206 (2021).Article 
CAS 
PubMed 

Google Scholar 
Silva, E., Rajapakse, N. & Kortenkamp, A. Something from ‘nothing’ — eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ. Sci. Technol. 36, 1751–1756 (2002).Article 
CAS 
PubMed 

Google Scholar 
Signoret, C., Caro-Bretelle, A.-S., Lopez-Cuesta, J.-M., Ienny, P. & Perrin, D. Alterations of plastics spectra in MIR and the potential impacts on identification towards recycling. Resour. Conserv. Recycl. 161, 104980 (2020).Article 

Google Scholar 
Roosen, M. et al. Operational framework to quantify ‘quality of recycling’ across different material types. Environ. Sci. Technol. 57, 13669–13680 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gall, M., Freudenthaler, P. J., Fischer, J. & Lang, R. W. Characterization of composition and structure–property relationships of commercial post-consumer polyethylene and polypropylene recyclates. Polymers 13, 1574 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rung, C. et al. Identification and evaluation of (non-)intentionally added substances in post-consumer recyclates and their toxicological classification. Recycling 8, 24 (2023).Article 

Google Scholar 
Ahamed, A. et al. Technical and environmental assessment of end-of-life scenarios for plastic packaging with electronic tags. Resour. Conserv. Recycl. 201, 107341 (2024).Article 

Google Scholar 
Bhubalan, K. et al. Leveraging blockchain concepts as watermarkers of plastics for sustainable waste management in progressing circular economy. Environ. Res. 213, 113631 (2022).Article 
CAS 
PubMed 

Google Scholar 
Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).Article 
CAS 

Google Scholar 
Uekert, T. et al. Technical, economic, and environmental comparison of closed-loop recycling technologies for common plastics. ACS Sustain. Chem. Eng. 11, 965–978 (2023).Article 
CAS 

Google Scholar 
Kusenberg, M. et al. Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: to decontaminate or not to decontaminate? Waste Manag. 138, 83–115 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jerdy, A. C. et al. Impact of the presence of common polymer additives in thermal and catalytic polyethylene decomposition. Appl. Catal. B 325, 122348 (2023).Article 
CAS 

Google Scholar 
Scallon, C. UK circular economy explained. Biffa https://www.biffa.co.uk/biffa-insights/circular-economy-explainer—biffa-insights (2023).Anastas, P. T & Warner, J. C. Green Chemistry: Theory and Practice (Oxford Univ. Press, 1998).Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400 (2020).Article 
CAS 
PubMed 

Google Scholar 
Lubongo, C. & Alexandridis, P. Assessment of performance and challenges in use of commercial automated sorting technology for plastic waste. Recycling 7, 11 (2022).Article 

Google Scholar 
Bǎlan, S. A. et al. Optimizing chemicals management in the United States and Canada through the essential-use approach. Environ. Sci. Technol. 57, 1568–1575 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Tsochatzis, E. D., Lopes, J. A. & Corredig, M. Chemical testing of mechanically recycled polyethylene terephthalate for food packaging in the European Union. Resour. Conserv. Recycl. 179, 106096 (2022).Article 
CAS 

Google Scholar 
Schyns, Z. O. G., Patel, A. D. & Shaver, M. P. Understanding poly(ethylene terephthalate) degradation using gas-mediated simulated recycling. Resour. Conserv. Recycl. 198, 107170 (2023).Article 
CAS 

Google Scholar 
Demets, R. et al. Addressing the complex challenge of understanding and quantifying substitutability for recycled plastics. Resour. Conserv. Recycl. 174, 105826 (2021).Article 

Google Scholar 
Ferg, E. E. & Bolo, L. L. A correlation between the variable melt flow index and the molecular mass distribution of virgin and recycled polypropylene used in the manufacturing of battery cases. Polym. Test. 32, 1452–1459 (2013).Article 
CAS 

Google Scholar 
A Chemicals Perspective on Designing with Sustainable Plastics: Goals, Considerations and Trade-Offs (OECD, 2021).Zimmermann, L. et al. Implementing the EU chemicals strategy for sustainability: the case of food contact chemicals of concern. J. Hazard. Mater. 437, 129167 (2022).Article 
CAS 
PubMed 

Google Scholar 
Cousins, I. T. et al. Finding essentiality feasible: common questions and misinterpretations concerning the ‘essential-use’ concept. Environ. Sci. Process. Impacts 23, 1079–1087 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fenner, K. & Scheringer, M. The need for chemical simplification as a logical consequence of ever-increasing chemical pollution. Environ. Sci. Technol. 55, 14470–14472 (2021).Article 
CAS 
PubMed 

Google Scholar 
Melnikov, F., Kostal, J., Voutchkova-Kostal, A., Zimmerman, J. B. & Anastas, P. T. Assessment of predictive models for estimating the acute aquatic toxicity of organic chemicals. Green Chem. 18, 4432–4445 (2016).Article 
CAS 

Google Scholar 
Lizarraga, L. E. et al. Advancing the science of a read-across framework for evaluation of data-poor chemicals incorporating systematic and new approach methods. Regul. Toxicol. Pharmacol. 137, 105293 (2023).Article 
CAS 
PubMed 

Google Scholar 
Mayr, A., Klambauer, G., Unterthiner, T. & Hochreiter, S. DeepTox: toxicity prediction using deep learning. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2015.00080 (2016).Article 

Google Scholar 
Klambauer, G., Clevert, D.-A., Shah, I., Benfenati, E. & Tetko, I. V. Introduction to the special issue: AI meets toxicology. Chem. Res. Toxicol. 36, 1163–1167 (2023).Article 
PubMed 

Google Scholar 
Ward, C. P., Reddy, C. M., Edwards, B. & Perri, S. T. To curb plastic pollution, industry and academia must unite. Nature 625, 658–662 (2024).Article 
CAS 
PubMed 

Google Scholar 
Law, K. L. & Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 7, 104–116 (2022).Article 
CAS 

Google Scholar 
James, B. D., Ward, C. P., Hahn, M. E., Thorpe, S. J. & Reddy, C. M. Minimizing the environmental impacts of plastic pollution through eco-design of products with low environmental persistence. ACS Sustain. Chem. Eng. 12, 1185–1194 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chemicals in Plastics (UNEP, 2023).Fantke, P., Aurisano, N., Provoost, J., Karamertzanis, P. G. & Hauschild, M. Toward effective use of REACH data for science and policy. Environ. Int. 135, 105336 (2020).Article 
PubMed 

Google Scholar 
Customisation Opportunities of IUCLID for the Management of Chemical Data 3rd edn. OECD Series on Testing and Assessment No. 297 (OECD, 2023).Krebs, A. et al. The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods. Arch. Toxicol. 94, 2435–2461 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Richard, A. M. et al. ToxCast chemical landscape: paving the road to 21st century toxicology. Chem. Res. Toxicol. 29, 1225–1251 (2016).Article 
CAS 
PubMed 

Google Scholar 
Williams, A. J. et al. The CompTox chemistry dashboard: a community data resource for environmental chemistry. J. Cheminformatics 9, 61 (2017).Article 

Google Scholar 
Olker, J. H. et al. The ECOTOXicology Knowledgebase: a curated database of ecologically relevant toxicity tests to support environmental research and risk assessment. Environ. Toxicol. Chem. 41, 1520–1539 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Winder, C., Azzi, R. & Wagner, D. The development of the Globally Harmonized System (GHS) of classification and labelling of hazardous chemicals. J. Hazard. Mater. 125, 29–44 (2005).Article 
CAS 
PubMed 

Google Scholar 
Globally Harmonized System for the Classification and Labeling of Chemicals 10th revised edn (UNECE, 2023).Groh, K. J., Geueke, B., Martin, O., Maffini, M. & Muncke, J. Overview of intentionally used food contact chemicals and their hazards. Environ. Int. 150, 106225 (2021).Article 
CAS 
PubMed 

Google Scholar 
Scheringer, M., Johansson, J. H., Salter, M. E., Sha, B. & Cousins, I. T. Stories of global chemical pollution: will we ever understand environmental persistence? Environ. Sci. Technol. 56, 17498–17501 (2022).Article 
CAS 
PubMed 

Google Scholar 
Cousins, I. T., Ng, C. A., Wang, Z. & Scheringer, M. Why is high persistence alone a major cause of concern? Environ. Sci. Process. Impacts 21, 781–792 (2019).Article 
CAS 
PubMed 

Google Scholar 
Yazid, M. F. H. A., Ta, G. C. & Mokhtar, M. Classified chemicals in accordance with the globally harmonized system of classification and labeling of chemicals: comparison of lists of the European Union, Japan, Malaysia and New Zealand. Saf. Health Work 11, 152–158 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
A Framework to Guide Selection of Chemical Alternatives (National Research Council, 2014).

Hot Topics

Related Articles