Soft electroactive polymer actuators based on regioregular/regiorandom-poly(3-hexylthiophene) blends with a nanofiber structure

Hines L, Petersen K, Lum GZ, Sitti M. Soft actuators for small-scale robotics. Adv Mater. 2017;29:1603483 https://doi.org/10.1002/adma.201603483.Article 

Google Scholar 
Mirvakili SM, Hunter IW. Artificial muscles: mechanisms, applications, and challenges. Adv Mater. 2018;30:1704407 https://doi.org/10.1002/adma.201704407.Article 

Google Scholar 
Ahn J, Gu J, Choi J, Han C, Jeong Y, Park J, et al. A review of recent advances in electrically driven polymer-based flexible actuators: smart materials, structures, and their applications. Adv Mater. 2022;7:2200041 https://doi.org/10.1002/admt.202200041.Article 

Google Scholar 
Smela E. Conjugated polymer actuators for biomedical applications. Adv Mater. 2003;15:481 https://doi.org/10.1002/adma.200390113.Article 

Google Scholar 
Baughman RH. Conducting polymer artificial muscles. Synth Met. 1996;78:339 https://doi.org/10.1016/0379-6779(96)80158-5.Article 

Google Scholar 
Otero TF, Angulo E, Rodriguez J, Santamaria C. Electrochemomechanical properties from a bilayer – polypyrrole nonconducting and flexible material artificial muscle. J Electroanal Chem. 1992;341:369 https://doi.org/10.1016/0022-0728(92)80495-P.Article 

Google Scholar 
Madden JD, Cush RA, Kanigan TS, Hunter IW. Fast contracting polypyrrole actuators. Synth Met. 2000;113:185 https://doi.org/10.1016/S0379-6779(00)00195-8.Article 

Google Scholar 
Hutchison AS, Lewis TW, Molton SE, Spinks GM, Wallace GG. Development of polypyrrole-based electromechanical actuators. Synth Met. 2000;113:121 https://doi.org/10.1016/S0379-6779(00)00190-9.Article 

Google Scholar 
Hara S, Zama T, Takashima W, Kaneto K. Free-standing polypyrrole actuators with response rate of 10.8% s–1. Synth Met. 2005;149:199 https://doi.org/10.1016/j.synthmet.2005.01.003.Article 

Google Scholar 
Roschning B, Weissmüller J. Stress-charge coupling coefficient for thin-film polypyrrole actuators – Investigation of capacitive ion exchange in the oxidized state. Electrochim Acta. 2019;318:504 https://doi.org/10.1016/j.electacta.2019.05.166.Article 

Google Scholar 
Kaneto K, Kaneko H, Takashima W. Response of chemomechanical deformation in polyaniline film on variety of anions. Jpn J Appl Phys Part 2. 1995;34:L837 https://doi.org/10.1143/Jjap.34.L837.Article 

Google Scholar 
Kaneto K, Kaneko M, Min Y, Macdiarmid AG. Artificial muscle – electromechanical actuators using polyaniline films. Synth Met. 1995;71:2211 https://doi.org/10.1016/0379-6779(94)03226-V.Article 

Google Scholar 
Kaneko M, Kaneto K. Deformation of poly(-methoxyaniline) film induced by polymer conformation on electrochemical oxidation. Polym J. 2001;33:104 https://doi.org/10.1295/polymj.33.104.Article 

Google Scholar 
Sansiñena JM, Gao JB, Wang HL. High-performance, monolithic polyaniline electrochemical actuators. Adv Funct Mater. 2003;13:703. https://doi.org/10.1002/adfm.200304347.Article 

Google Scholar 
Beregoi M, Evanghelidis A, Matei E, Enculescu I. Polyaniline based microtubes as building-blocks for artificial muscle applications. Sens Actuat B-Chem. 2017;253:576 https://doi.org/10.1016/j.snb.2017.06.128.Article 

Google Scholar 
Spinks GM, Mottaghitalab V, Bahrami-Saniani M, Whitten PG, Wallace GG. Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater. 2006;18:637 https://doi.org/10.1002/adma.200502366.Article 

Google Scholar 
Spinks GA, Shin SR, Wallace GG, Whitten PG, Kim IY, Kim SI, et al. A novel “dual mode” actuation in chitosan/polyaniline/carbon nanotube fibers. Sens Actuat B-Chem. 2007;121:616 https://doi.org/10.1016/j.snb.2006.04.103.Article 

Google Scholar 
Kato Y, Sugino T. Effect of the polyaniline/carbon black additive on the dispersion state of carbon nanotubes and polymer actuator performance. Sens Actuat A-Phys. 2023;355:114302 https://doi.org/10.1016/j.sna.2023.114302.Article 

Google Scholar 
Xi B, Whitten PG, Gestos A, Truong V-T, Spinks GM, Wallance GG. Electrochemical pneumatic actuators utilizing carbon nanotube electrodes. Sens Actuat B-Chem. 2009;138:48 https://doi.org/10.1016/j.snb.2008.12.067.Article 

Google Scholar 
Kong L, Chen W. Carbon nanotube and Graphene-based bioinspired electrochemical actuators. Adv Mater. 2014;26:1025 https://doi.org/10.1002/adma.201303432.Article 
PubMed 

Google Scholar 
Kim SH, Haines CS, Li N, Kim KJ, Mun TJ, Choi C, et al. Harvesting electrical energy from carbon nanotube yarn twist. Science. 2017;357:773 https://doi.org/10.1126/science.aam8771.Article 
PubMed 

Google Scholar 
Yoshino K, Nakao K, Onoda M, Sugimoto R. Novel doping effect of conducting polymer gel. Jpn J Appl Phys Part 2. 1989;28:L682 https://doi.org/10.1143/Jjap.28.L682.Article 

Google Scholar 
Yoshino K, Nakao K, Onoda M. Anisotropic characteristics of drawn poly(3-alkylthiophene) gel. Jpn J Appl Phys Part 2. 1989;28:L1032 https://doi.org/10.1143/Jjap.28.L1032.Article 

Google Scholar 
Shakuda S, Morita S, Kawai T, Yoshino K. Dynamic characteristics of bimorph with conducting polymer gel. Jpn J Appl Phys Part 1. 1993;32:5143 https://doi.org/10.1143/Jjap.32.5143.Article 

Google Scholar 
Chen XW, Inganas O. Doping-induced volume changes in poly(3-octylthiophene) solids and gels. Synth Met. 1995;74:159 https://doi.org/10.1016/0379-6779(95)03355-6.Article 

Google Scholar 
McCullough, RD & Lowe, RD Enhanced electrical-conductivity in regioselectively synthesized poly(3-alkylthiophenes). J Chem Soc Chem Comm. 1992;70. https://doi.org/10.1039/c39920000070.Chen TA, Rieke RD. The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer – nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization. J Am Chem Soc. 1992;114:10087 https://doi.org/10.1039/10.1021/ja00051a066.Article 

Google Scholar 
Merlo JA, Frisbie CD. Field effect conductance of conducting polymer nanofibers. J Polym Sci Pol Phys 2003;41:2674 https://doi.org/10.1002/Polb.10656.Article 

Google Scholar 
Merlo JA, Frisbie CD. Field effect transport and trapping in regioregular polythiophene nanofibers. J Phys Chem B. 2004;108:19169 https://doi.org/10.1021/Jp047023a.Article 

Google Scholar 
Chang JF, Sun BQ, Breiby DW, Nielsen MM, Solling TI, Giles M, et al. Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem Mater. 2004;16:4722 https://doi.org/10.1021/Cm049617w.Article 

Google Scholar 
Yang H, Shin TJ, Yang L, Cho K, Ryu CY, Bao Z. Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors. Adv Func Mater. 2005;15:671. https://doi.org/10.1002/adfm.200400297.Article 

Google Scholar 
Kim DH, Jang Y, Park YD, Cho K. Controlled one-dimensional nanostructures in poly(3-hexylthiophene) thin film for high-performance organic field-effect transistors. J Phys Chem B. 2006;110:15763 https://doi.org/10.1021/Jp062899y.Article 
PubMed 

Google Scholar 
Oosterbaan WD, Bolsée J-C, Gadisa A, Vrindts V, Bertho S, D’Haen J, et al. Alkyl-chain-length-independent hole mobility via morphological control with poly(3-alkylthiophene) nanofibers. Adv Funct Mater 2010;20:792. https://doi.org/10.1002/adfm.200901471.Article 

Google Scholar 
Samitsu S, Shimomura T, Heike S, Hashizume T, Ito K. Field-effect carrier transport in poly(3-alkylthiophene) nanofiber networks and isolated nanofibers. Macromolecules. 2010;43:7891 https://doi.org/10.1021/ma101655s.Article 

Google Scholar 
Shimomura T, Takahashi T, Ichimura Y, Nakagawa S, Noguchi K, Heike S, et al. Relationship between structural coherence and intrinsic carrier transport in an isolated poly(3-hexylthiophene) nanofiber. Phys Rev B. 2011;83:115314 https://doi.org/10.1103/PhysRevB.83.115314.Article 

Google Scholar 
Shan HT, He JX, Zhu BY, Zhou JJ, Huo H. The role of the commercial nucleating agent HPN-68 L in the stretchable and electrical properties of solvent vapor annealed P3HT. J Mater Chem C. 2022;10:17583 https://doi.org/10.1039/d2tc02121h.Article 

Google Scholar 
Gu KC, Onorato JW, Luscombe CK, Loo YL. The role of tie chains on the mechano-electrical properties of semiconducting polymer films. Adv Electron Mater. 2020;6:1901070 https://doi.org/10.1002/aelm.201901070.Article 

Google Scholar 
Na JY, Kang B, Park YD. Influence of molecular weight on the solidification of a semiconducting polymer during time-controlled spin-coating. J Phys Chem C. 2019;123:17102 https://doi.org/10.1021/acs.jpcc.9b03203.Article 

Google Scholar 
Lim E, Glaudell AM, Miller R, Chabinyc ML. The role of ordering on the thermoelectric properties of blends of regioregular and regiorandom poly(3-hexylthiophene). Adv Electron Mater. 2019;5:1800915 https://doi.org/10.1002/aelm.201800915.Article 

Google Scholar 
Qiu L, Lim JA, Wang X, Lee WH, Hwang M, Cho K. Versatile use of vertical-phase-separation-induced bilayer structures in organic thin-film transistors. Adv Mater. 2008;20:1141 https://doi.org/10.1002/adma.200702505.Article 

Google Scholar 
Qiu LZ, Wang X, Lee WH, Lim JA, Kim JS, Kwak D, et al. Organic thin-film transistors based on blends of poly(3-hexylthiophene) and polystyrene with a solubility-induced low percolation threshold. Chem Mater. 2009;21:4380 https://doi.org/10.1021/cm900628j.Article 

Google Scholar 
Morita J, Goto T, Kanehashi S, Shimomura T. Electrical double percolation of polybutadiene/polyethylene glycol blends loaded with conducting polymer nanofibers. Polymers. 2020;12:2658 https://doi.org/10.1021/10.3390/polym12112658.Article 
PubMed 
PubMed Central 

Google Scholar 
Li N, Wang P, Shi HF, Chen Y, Yang L, Zhang YF, et al. An ultrahigh efficiency electrochemical actuator. Extrem Mech Lett. 2022;53:101691 https://doi.org/10.1016/j.eml.2022.101691.Article 

Google Scholar 

Hot Topics

Related Articles