Ketogenic diet reshapes cancer metabolism through lysine β-hydroxybutyrylation

Ułamek-Kozioł, M., Czuczwar, S. J., Januszewski, S. & Pluta, R. Ketogenic diet and epilepsy. Nutrients 11, 2510 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Dowis, K. & Banga, S. The potential health benefits of the ketogenic diet: a narrative review. Nutrients 13, 1654 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhu, H. et al. Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations. Signal Transduct. Target. Ther. 7, 11 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Westerterp-Plantenga, M. S., Nieuwenhuizen, A., Tomé, D., Soenen, S. & Westerterp, K. R. Dietary protein, weight loss, and weight maintenance. Annu. Rev. Nutr. 29, 21–41 (2009).Article 
CAS 
PubMed 

Google Scholar 
Veldhorst, M. et al. Protein-induced satiety: effects and mechanisms of different proteins. Physiol. Behav. 94, 300–307 (2008).Article 
CAS 
PubMed 

Google Scholar 
Ma, S., Huang, Q., Tominaga, T., Liu, C. & Suzuki, K. An 8-week ketogenic diet alternated interleukin-6, ketolytic and lipolytic gene expression, and enhanced exercise capacity in mice. Nutrients 10, 1696 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Fine, E. J. & Feinman, R. D. Thermodynamics of weight loss diets. Nutr. Metab. 1, 15 (2004).Article 

Google Scholar 
Feinman, R. D. & Fine, E. J. Nonequilibrium thermodynamics and energy efficiency in weight loss diets. Theor. Biol. Med. Model. 4, 27 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Puchalska, P. & Crawford, P. A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barry, D. et al. The ketogenic diet in disease and development. Int. J. Dev. Neurosci. 68, 53–58 (2018).Article 
PubMed 

Google Scholar 
Miyamoto, J. et al. Ketone body receptor GPR43 regulates lipid metabolism under ketogenic conditions. Proc. Natl Acad. Sci. USA 116, 23813–23821 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xie, Z. et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol. Cell 62, 194–206 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Koronowski, K. B. et al. Ketogenesis impact on liver metabolism revealed by proteomics of lysine β-hydroxybutyrylation. Cell Rep. 36, 109487 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zheng, Y. et al. β-hydroxybutyrate inhibits ferroptosis-mediated pancreatic damage in acute liver failure through the increase of H3K9bhb. Cell Rep. 41, 111847 (2022).Article 
CAS 
PubMed 

Google Scholar 
Terranova, C. J. et al. Reprogramming of H3K9bhb at regulatory elements is a key feature of fasting in the small intestine. Cell Rep. 37, 110044 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, H. et al. Ketogenesis-generated beta-hydroxybutyrate is an epigenetic regulator of CD8+ T-cell memory development. Nat. Cell Biol. 22, 18–25 (2020).Article 
CAS 
PubMed 

Google Scholar 
Liu, K. et al. p53 β-hydroxybutyrylation attenuates p53 activity. Cell Death Dis. 10, 243 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, H. et al. β-hydroxybutyrate reduces reinstatement of cocaine conditioned place preference through hippocampal CaMKII-α β-hydroxybutyrylation. Cell Rep. 41, 111724 (2022).Article 
CAS 
PubMed 

Google Scholar 
Nasser, S. et al. Ketogenic diet administration to mice after a high-fat-diet regimen promotes weight loss, glycemic normalization and induces adaptations of ketogenic pathways in liver and kidney. Mol. Metab. 65, 101578 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Newman, J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 26, 547–557 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, Z. et al. Effects of low-carbohydrate diet and ketogenic diet on glucose and lipid metabolism in type 2 diabetic mice. Nutrition 89, 111230 (2021).Article 
CAS 
PubMed 

Google Scholar 
Martínez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).Article 
PubMed 

Google Scholar 
You, M. et al. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct. Target. Ther. 8, 196 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoy, A. J., Nagarajan, S. R. & Butler, L. M. Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat. Rev. Cancer 21, 753–766 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ochoa, D. et al. The functional landscape of the human phosphoproteome. Nat. Biotechnol. 38, 365–373 (2020).Article 
CAS 
PubMed 

Google Scholar 
Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5998–6008 (2017).
Google Scholar 
Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. Proc. 34th International Conference on Machine Learning 70, 1126–1135 (2017).Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4768–4777 (2017).
Google Scholar 
Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rutter, W. J., Rajkumar, T., Penhoet, E., Kochman, M. & Valentine, R. Aldolase variants: structure and physiological significance. Ann. N. Y. Acad. Sci. 151, 102–117 (1968).Article 
CAS 
PubMed 

Google Scholar 
Chang, Y. C., Yang, Y. C., Tien, C. P., Yang, C. J. & Hsiao, M. Roles of aldolase family genes in human cancers and diseases. Trends Endocrinol. Metab. 29, 549–559 (2018).Article 
CAS 
PubMed 

Google Scholar 
Shafqat, N., Turnbull, A., Zschocke, J., Oppermann, U. & Yue, W. W. Crystal structures of human HMG-CoA synthase isoforms provide insights into inherited ketogenesis disorders and inhibitor design. J. Mol. Biol. 398, 497–506 (2010).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Z., Bi, X., Lian, X. & Niu, Z. BDH1 promotes lung cancer cell proliferation and metastases by PARP1-mediated autophagy. J. Cell. Mol. Med. 27, 939–949 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, C. S. et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548, 112–116 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, M. et al. Aldolase is a sensor for both low and high glucose, linking to AMPK and mTORC1. Cell Res. 31, 478–481 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ren, C. et al. Expanding the scope of genetically encoded lysine post-translational modifications with lactylation, beta-hydroxybutyrylation and lipoylation. ChemBioChem 23, e202200302 (2022).Article 
CAS 
PubMed 

Google Scholar 
Huang, H. et al. The regulatory enzymes and protein substrates for the lysine beta-hydroxybutyrylation pathway. Sci. Adv. 7, eabe2771 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Oughtred, R. et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47, D529–D541 (2019).Article 
CAS 
PubMed 

Google Scholar 
You, Z. et al. Requirement for p62 acetylation in the aggregation of ubiquitylated proteins under nutrient stress. Nat. Commun. 10, 5792 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roberts, M. N. et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab. 26, 539–546 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y. H., Liu, C. L., Chiu, W. C., Twu, Y. C. & Liao, Y. J. HMGCS2 mediates ketone production and regulates the proliferation and metastasis of hepatocellular carcinoma. Cancers 11, 1876 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y. H., Suk, F. M. & Liao, Y. J. Loss of HMGCS2 enhances lipogenesis and attenuates the protective effect of the ketogenic diet in liver cancer. Cancers 12, 1797 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dmitrieva-Posocco, O. et al. β-Hydroxybutyrate suppresses colorectal cancer. Nature 605, 160–165 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shang, S., Wang, L., Zhang, Y., Lu, H. & Lu, X. The beta-hydroxybutyrate suppresses the migration of glioma cells by inhibition of NLRP3 inflammasome. Cell Mol. Neurobiol. 38, 1479–1489 (2018).Article 
CAS 
PubMed 

Google Scholar 
Shukla, S. K. et al. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab. 2, 18 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Sabatini, D. M. Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proc. Natl Acad. Sci. USA 114, 11818–11825 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shim, H. et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl Acad. Sci. USA 94, 6658–6663 (1997).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, K. et al. A novel allosteric inhibitor of phosphoglycerate mutase 1 suppresses growth and metastasis of non-small-cell lung cancer. Cell Metab. 30, 1107–1119 (2019).Article 
CAS 
PubMed 

Google Scholar 
Qin, Y. J. et al. Loss of PDK4 expression promotes proliferation, tumorigenicity, motility and invasion of hepatocellular carcinoma cells. J. Cancer 11, 4397–4405 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qie, S. & Diehl, J. A. Cyclin D1, cancer progression, and opportunities in cancer treatment. J. Mol. Med. 94, 1313–1326 (2016).Article 
CAS 
PubMed 

Google Scholar 
Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, H., Jung, W., Kim, A., Kim, H. K. & Kim, B. H. High Paip1 expression as a potential prognostic marker in hepatocellular carcinoma. In Vivo 34, 2491–2497 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).Yang, Z. et al. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat. Metab. 5, 61–79 (2023).Article 
CAS 
PubMed 

Google Scholar 
Yu, K. et al. Deep learning based prediction of reversible HAT/HDAC-specific lysine acetylation. Brief. Bioinform. 21, 1798–1805 (2020).Article 
CAS 
PubMed 

Google Scholar 
Popa, F. I. et al. 3-hydroxyacyl-coenzyme a dehydrogenase deficiency: identification of a new mutation causing hyperinsulinemic hypoketotic hypoglycemia, altered organic acids and acylcarnitines concentrations. JIMD Rep. 2, 71–77 (2012).Article 
PubMed 

Google Scholar 
Koronowski, K. B. et al. Ketogenesis impact on liver metabolism revealed by proteomics of lysine beta-hydroxybutyrylation. Cell Rep. 36, 109487 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McDaniel, S. S., Rensing, N. R., Thio, L. L., Yamada, K. A. & Wong, M. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia 52, e7–e11 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kusakabe, T., Motoki, K. & Hori, K. Mode of interactions of human aldolase isozymes with cytoskeletons. Arch. Biochem. Biophys. 344, 184–193 (1997).Article 
CAS 
PubMed 

Google Scholar 
Yao, H., Wei, Y., Huang, J. & Li, Z. Hierarchically structured meta-learning. International Conference on Machine Learning 97, 7045–7054 (2019).Zheng, Y., Fan, J., Zhang, J. & Gao, X. Discriminative fast hierarchical learning for multiclass image classification. IEEE Trans. Neural Netw. Learn. Syst. 31, 2779–2790 (2020).Article 
PubMed 

Google Scholar 
Li, Z., Gong, D., Li, X. & Tao, D. Aging face recognition: a hierarchical learning model based on local patterns selection. IEEE Trans. Image Process. 25, 2146–2154 (2016).Article 
PubMed 

Google Scholar 
Xu, L. C. et al. Towards data-driven design of asymmetric hydrogenation of olefins: database and hierarchical learning. Angew. Chem. Int. Ed. Engl. 60, 22804–22811 (2021).Article 
CAS 
PubMed 

Google Scholar 
Fazeli, N. et al. See, feel, act: hierarchical learning for complex manipulation skills with multisensory fusion. Sci. Robot 4, eaav3123 (2019).Article 
PubMed 

Google Scholar 
Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).Article 

Google Scholar 
Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, W. et al. CPLM 4.0: an updated database with rich annotations for protein lysine modifications. Nucleic Acids Res. 50, D451–D459 (2022).Article 
CAS 
PubMed 

Google Scholar 
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, C. et al. GPS 5.0: an update on the prediction of kinase-specific phosphorylation sites in proteins. Genomics Proteom. Bioinformatics 18, 72–80 (2020).Article 

Google Scholar 
Ning, W. et al. GPS-Palm: a deep learning-based graphic presentation system for the prediction of S-palmitoylation sites in proteins. Brief. Bioinform. 22, 1836–1847 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ning, W. et al. HybridSucc: a hybrid-learning architecture for general and species-specific succinylation site prediction. Genomics Proteom. Bioinformatics 18, 194–207 (2020).Article 

Google Scholar 
Chen, M. et al. GPS 6.0: an updated server for prediction of kinase-specific phosphorylation sites in proteins. Nucleic Acids Res. 51, W243–W250 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, Y. et al. SPIDER2: a package to predict secondary structure, accessible surface area, and main-chain torsional angles by deep neural networks. Methods Mol. Biol. 1484, 55–63 (2017).Article 
CAS 
PubMed 

Google Scholar 
Galloway, C. D. et al. Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram. JAMA Cardiol. 4, 428–436 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, W., Xu, Z., Xu, D., Dai, D. & Van Gool, L. Domain generalization and adaptation using low rank exemplar SVMs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 1114–1127 (2018).Article 
PubMed 

Google Scholar 
Zhao, X., Wu, S., Fang, N., Sun, X. & Fan, J. Evaluation of single-cell classifiers for single-cell RNA sequencing data sets. Brief. Bioinform. 21, 1581–1595 (2020).Article 
CAS 
PubMed 

Google Scholar 
Pei, S., Chen, H., Nie, F., Wang, R. & Li, X. Centerless clustering. IEEE Trans. Pattern Anal. Mach. Intell. 45, 167–181 (2023).Article 
PubMed 

Google Scholar 
Yu, Y. & Tran, H. An XGBoost-based fitted Q iteration for finding the optimal STI strategies for HIV patients. IEEE Trans. Neural Netw. Learn. Syst. 35, 648–656 (2022).Article 

Google Scholar 
Schwartz, D. & Gygi, S. P. An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat. Biotechnol. 23, 1391–1398 (2005).Article 
CAS 
PubMed 

Google Scholar 
Kumar, M. et al. ELM—the Eukaryotic Linear Motif resource—2024 update. Nucleic Acids Res. 52, D442–D455 (2024).Article 
PubMed 

Google Scholar 
Shen, X. et al. A thiazole-derived oridonin analogue exhibits antitumor activity by directly and allosterically inhibiting STAT3. J. Biol. Chem. 294, 17471–17486 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Han, Z. et al. Model-based analysis uncovers mutations altering autophagy selectivity in human cancer. Nat. Commun. 12, 3258 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tu, Y. et al. TBC1D23 mediates Golgi-specific LKB1 signaling. Nat. Commun. 15, 1785 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhao, L. et al. FAM91A1–TBC1D23 complex structure reveals human genetic variations susceptible for PCH. Proc. Natl Acad. Sci. USA 120, e2309910120 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Webster, J. & Oxley, D. Protein identification by MALDI-TOF mass spectrometry. Methods Mol. Biol. 800, 227–240 (2012).Article 
CAS 
PubMed 

Google Scholar 
Takanashi, M. & Saito, T. Characterization of two 3-hydroxybutyrate dehydrogenases in poly(3-hydroxybutyrate)-degradable bacterium, Ralstonia pickettii T1. J. Biosci. Bioeng. 101, 501–507 (2006).Article 
CAS 
PubMed 

Google Scholar 
Shimazu, T. et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 12, 654–661 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Andrew Skaff, D. & Miziorko, H. M. A visible wavelength spectrophotometric assay suitable for high-throughput screening of 3-hydroxy-3-methylglutaryl-CoA synthase. Anal. Biochem. 396, 96–102 (2010).Article 
CAS 
PubMed 

Google Scholar 
Rardin, M. J. et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 18, 920–933 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, S. et al. FSP1 oxidizes NADPH to suppress ferroptosis. Cell Res. 33, 967–970 (2023).Article 
CAS 
PubMed 

Google Scholar 
Robinson, A. D., Eich, M. L. & Varambally, S. Dysregulation of de novo nucleotide biosynthetic pathway enzymes in cancer and targeting opportunities. Cancer Lett. 470, 134–140 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kotlyar, M., Pastrello, C., Malik, Z. & Jurisica, I. IID 2018 update: context-specific physical protein–protein interactions in human, model organisms and domesticated species. Nucleic Acids Res. 47, D581–D589 (2019).Article 
CAS 
PubMed 

Google Scholar 
Li, T. et al. A scored human protein–protein interaction network to catalyze genomic interpretation. Nat. Methods 14, 61–64 (2017).Article 
CAS 
PubMed 

Google Scholar 
Calderone, A., Castagnoli, L. & Cesareni, G. mentha: a resource for browsing integrated protein-interaction networks. Nat. Methods 10, 690–691 (2013).Article 
CAS 
PubMed 

Google Scholar 
Das, J. & Yu, H. HINT: high-quality protein interactomes and their applications in understanding human disease. BMC Syst. Biol. 6, 92 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Razick, S., Magklaras, G. & Donaldson, I. M. iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics 9, 405 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Cowley, M. J. et al. PINA v2.0: mining interactome modules. Nucleic Acids Res. 40, D862–D865 (2012).Article 
CAS 
PubMed 

Google Scholar 
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles