Development and experimental validation of hypoxia-related gene signatures for osteosarcoma diagnosis and prognosis based on WGCNA and machine learning

Beird, H. C. et al. Osteosarcoma. Nat. Rev. Dis. Primers 8, 77. https://doi.org/10.1038/s41572-022-00409-y (2022).Article 

Google Scholar 
Rojas, G. A., Hubbard, A. K., Diessner, B. J., Ribeiro, K. B. & Spector, L. G. International trends in incidence of osteosarcoma (1988–2012). Int. J. Cancer 149, 1044–1053. https://doi.org/10.1002/ijc.33673 (2021).Article 
CAS 

Google Scholar 
Brahimi-Horn, M. C., Chiche, J. & Pouyssegur, J. Hypoxia and cancer. J. Mol. Med. (Berlin) 85, 1301–1307. https://doi.org/10.1007/s00109-007-0281-3 (2007).Article 

Google Scholar 
Yang, G., Shi, R. & Zhang, Q. Hypoxia and oxygen-sensing signaling in gene regulation and cancer progression. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21218162 (2020).Article 

Google Scholar 
Shi, R., Liao, C. & Zhang, Q. Hypoxia-driven effects in cancer: Characterization, mechanisms, and therapeutic implications. Cells https://doi.org/10.3390/cells10030678 (2021).Article 

Google Scholar 
Hayez, A. et al. High TMEM45A expression is correlated to epidermal keratinization. Exp. Dermatol. 23, 339–344. https://doi.org/10.1111/exd.12403 (2014).Article 
CAS 

Google Scholar 
Kim, A. L. et al. TMEM45A is dispensable for epidermal morphogenesis, keratinization and barrier formation. PLoS ONE https://doi.org/10.1371/journal.pone.0147069 (2016).Article 

Google Scholar 
Flamant, L. et al. TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells. BMC Cancer 12, 391. https://doi.org/10.1186/1471-2407-12-391 (2012).Article 
CAS 

Google Scholar 
Martin-Rendon, E. et al. Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia. Stem Cells 25, 1003–1012. https://doi.org/10.1634/stemcells.2006-0398 (2007).Article 
CAS 

Google Scholar 
Guo, J. et al. Inhibition of TMEM45A suppresses proliferation, induces cell cycle arrest and reduces cell invasion in human ovarian cancer cells. Oncol. Rep. 33, 3124–3130. https://doi.org/10.3892/or.2015.3902 (2015).Article 
CAS 

Google Scholar 
Moore, E. E. et al. Stanniocalcin 2: Characterization of the protein and its localization to human pancreatic alpha cells. Horm. Metab. Res. 31, 406–414. https://doi.org/10.1055/s-2007-978764 (1999).Article 
ADS 
CAS 

Google Scholar 
Law, A. Y. S. & Wong, C. K. C. Stanniocalcin-2 is a HIF-1 target gene that promotes cell proliferation in hypoxia. Exp. Cell Res. 316, 466–476. https://doi.org/10.1016/j.yexcr.2009.09.018 (2010).Article 
CAS 

Google Scholar 
Bouras, T. et al. Stanniocalcin 2 is an estrogen-responsive gene coexpressed with the estrogen receptor in human breast cancer. Cancer Res. 62, 1289–1295 (2002).CAS 

Google Scholar 
Ieta, K. et al. Clinicopathological significance of stanniocalcin 2 gene expression in colorectal cancer. Int. J. Cancer 125, 926–931. https://doi.org/10.1002/ijc.24453 (2009).Article 
CAS 

Google Scholar 
Yan, G. R. et al. Characterization of phosphoproteins in gastric cancer secretome. OMICS 15, 83–90. https://doi.org/10.1089/omi.2010.0056 (2011).Article 
CAS 

Google Scholar 
Tamura, K. et al. Stanniocalcin 2 overexpression in castration-resistant prostate cancer and aggressive prostate cancer. Cancer Sci. 100, 914–919. https://doi.org/10.1111/j.1349-7006.2009.01117.x (2009).Article 
CAS 

Google Scholar 
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).Article 
CAS 

Google Scholar 
Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559. https://doi.org/10.1186/1471-2105-9-559 (2008).Article 
CAS 

Google Scholar 
Tang, Z. et al. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98–W102. https://doi.org/10.1093/nar/gkx247 (2017).Article 
CAS 

Google Scholar 
Nagy, A., Munkacsy, G. & Gyorffy, B. Pancancer survival analysis of cancer hallmark genes. Sci. Rep. 11, 6047. https://doi.org/10.1038/s41598-021-84787-5 (2021).Article 
ADS 
CAS 

Google Scholar 
Meltzer, P. S. & Helman, L. J. New horizons in the treatment of osteosarcoma. N. Engl. J. Med. 385, 2066–2076. https://doi.org/10.1056/NEJMra2103423 (2021).Article 
CAS 

Google Scholar 
Isobe, T. et al. Clinicopathological significance of hypoxia-inducible factor-1 alpha (HIF-1alpha) expression in gastric cancer. Int. J. Clin. Oncol. 18, 293–304. https://doi.org/10.1007/s10147-012-0378-8 (2013).Article 
CAS 

Google Scholar 
Li, M. et al. HIF in gastric cancer: Regulation and therapeutic target. Molecules https://doi.org/10.3390/molecules27154893 (2022).Article 

Google Scholar 
Chang, P. H. et al. Interplay between desmoglein2 and hypoxia controls metastasis in breast cancer. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2014408118 (2021).Article 

Google Scholar 
Wang, R. et al. Hypoxia-inducible factor-dependent ADAM12 expression mediates breast cancer invasion and metastasis. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2020490118 (2021).Article 

Google Scholar 
Liu, Y. et al. Development and validation of a hypoxia-immune-based microenvironment gene signature for risk stratification in gastric cancer. J. Transl. Med. 18, 201. https://doi.org/10.1186/s12967-020-02366-0 (2020).Article 
CAS 

Google Scholar 
Yang, X. et al. A combined hypoxia and immune gene signature for predicting survival and risk stratification in triple-negative breast cancer. Aging (Albany NY) 13, 19486–19509. https://doi.org/10.18632/aging.203360 (2021).Article 
CAS 

Google Scholar 
Wang, G., Zhang, X., Feng, W. & Wang, J. Prediction of prognosis and immunotherapy of osteosarcoma based on necroptosis-related lncRNAs. Front. Genet. 13, 917935. https://doi.org/10.3389/fgene.2022.917935 (2022).Article 
CAS 

Google Scholar 
Zhang, Y. et al. A novel pyroptosis-related signature for predicting prognosis and indicating immune microenvironment features in osteosarcoma. Front. Genet. 12, 780780. https://doi.org/10.3389/fgene.2021.780780 (2021).Article 
CAS 

Google Scholar 
Zhang, Y. et al. Comprehensive analysis of a ferroptosis-related lncRNA signature for predicting prognosis and immune landscape in osteosarcoma. Front. Oncol. 12, 880459. https://doi.org/10.3389/fonc.2022.880459 (2022).Article 
MathSciNet 
CAS 

Google Scholar 
Jiang, H., Chen, H., Wan, P., Liang, M. & Chen, N. Upregulation of TMEM45A promoted the progression of clear cell renal cell carcinoma in vitro. J. Inflamm. Res. 14, 6421–6430. https://doi.org/10.2147/JIR.S341596 (2021).Article 
CAS 

Google Scholar 
Zhang, L., Wu, F. & Zhao, J. Transmembrane protein 45A regulates the proliferation, migration, and invasion of glioma cells through nuclear factor kappa-B. Anticancer Drugs 31, 900–907. https://doi.org/10.1097/CAD.0000000000000890 (2020).Article 
CAS 

Google Scholar 
Tang, Y., Guo, C., Chen, C. & Zhang, Y. Characterization of cellular senescence patterns predicts the prognosis and therapeutic response of hepatocellular carcinoma. Front. Mol. Biosci. 9, 1100285. https://doi.org/10.3389/fmolb.2022.1100285 (2022).Article 
CAS 

Google Scholar 
Joshi, A. D. New insights into physiological and pathophysiological functions of stanniocalcin 2. Front. Endocrinol. 11, 172. https://doi.org/10.3389/fendo.2020.00172 (2020).Article 

Google Scholar 
Buckanovich, R. J. et al. Tumor vascular proteins as biomarkers in ovarian cancer. J. Clin. Oncol. 25, 852–861. https://doi.org/10.1200/JCO.2006.08.8583 (2007).Article 
CAS 

Google Scholar 
Liu, Y. N. et al. Acquired resistance to EGFR tyrosine kinase inhibitors is mediated by the reactivation of STC2/JUN/AXL signaling in lung cancer. Int. J. Cancer 145, 1609–1624. https://doi.org/10.1002/ijc.32487 (2019).Article 
CAS 

Google Scholar 
Jiang, Z. H. et al. A pan-cancer analysis reveals the prognostic and immunotherapeutic value of stanniocalcin-2 (STC2). Front. Genet. 13, 927046. https://doi.org/10.3389/fgene.2022.927046 (2022).Article 
CAS 

Google Scholar 
Qie, S. & Sang, N. Stanniocalcin 2 (STC2): A universal tumour biomarker and a potential therapeutical target. J. Exp. Clin. Cancer Res. 41, 161. https://doi.org/10.1186/s13046-022-02370-w (2022).Article 
CAS 

Google Scholar 
Wang, Z. et al. Innate immune cells: A potential and promising cell population for treating osteosarcoma. Front. Immunol. 10, 1114. https://doi.org/10.3389/fimmu.2019.01114 (2019).Article 
CAS 

Google Scholar 
Hishiki, T. et al. Invariant natural killer T infiltration in neuroblastoma with favorable outcome. Pediatr. Surg. Int. 34, 195–201. https://doi.org/10.1007/s00383-017-4189-x (2018).Article 

Google Scholar 
Tachibana, T. et al. Increased intratumor Valpha24-positive natural killer T cells: A prognostic factor for primary colorectal carcinomas. Clin. Cancer Res. 11, 7322–7327. https://doi.org/10.1158/1078-0432.CCR-05-0877 (2005).Article 
CAS 

Google Scholar 
Shen, B., Zhang, G., Liu, Y., Wang, J. & Jiang, J. Identification and analysis of immune-related gene signature in hepatocellular carcinoma. Genes https://doi.org/10.3390/genes13101834 (2022).Article 

Google Scholar 
Wang, X., Xie, C. & Lin, L. Development and validation of a cuproptosis-related lncRNA model correlated to the cancer-associated fibroblasts enable the prediction prognosis of patients with osteosarcoma. J. Bone Oncol. https://doi.org/10.1016/j.jbo.2022.100463 (2023).Article 

Google Scholar 
Gieniec, K. A., Butler, L. M., Worthley, D. L. & Woods, S. L. Cancer-associated fibroblasts-heroes or villains?. Br. J. Cancer 121, 293–302. https://doi.org/10.1038/s41416-019-0509-3 (2019).Article 

Google Scholar 
Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598. https://doi.org/10.1038/nrc.2016.73 (2016).Article 
CAS 

Google Scholar 
O’Connell, J. T. et al. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc. Natl. Acad. Sci. USA 108, 16002–16007. https://doi.org/10.1073/pnas.1109493108 (2011).Article 
ADS 

Google Scholar 
Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348. https://doi.org/10.1016/j.cell.2005.02.034 (2005).Article 
CAS 

Google Scholar 
Dalin, S. et al. Deoxycytidine release from pancreatic stellate cells promotes gemcitabine resistance. Cancer Res. 79, 5723–5733. https://doi.org/10.1158/0008-5472.CAN-19-0960 (2019).Article 
CAS 

Google Scholar 
Olivares, O. et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Commun. 8, 16031. https://doi.org/10.1038/ncomms16031 (2017).Article 
ADS 
CAS 

Google Scholar 
Parker, S. J. et al. Selective alanine transporter utilization creates a targetable metabolic niche in pancreatic cancer. Cancer Discov. 10, 1018–1037. https://doi.org/10.1158/2159-8290.CD-19-0959 (2020).Article 
CAS 

Google Scholar 
Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483. https://doi.org/10.1038/nature19084 (2016).Article 
ADS 
CAS 

Google Scholar 
Ohlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596. https://doi.org/10.1084/jem.20162024 (2017).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles