Seed-assisted formation of NiFe anode catalysts for anion exchange membrane water electrolysis at industrial-scale current density

Li, D. et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy 5, 378–385 (2020).Article 
CAS 

Google Scholar 
Wang, J. et al. Non-precious metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 49, 9154–9196 (2020).Article 
CAS 
PubMed 

Google Scholar 
Niether, C. et al. Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanoparticles. Nat. Energy 3, 476–483 (2018).Article 
CAS 

Google Scholar 
Chong, L. et al. La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis. Science 380, 609–616 (2023).Article 
CAS 
PubMed 

Google Scholar 
Xu, J. et al. IrOx·nH2O with lattice water–assisted oxygen exchange for high-performance proton exchange membrane water electrolyzers. Sci. Adv. 9, eadh1718 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
King, L. A. et al. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 14, 1071–1074 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wu, Z.-Y. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 22, 100–108 (2023).Article 
CAS 
PubMed 

Google Scholar 
Lin, C. et al. In situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 4, 1012–1023 (2021).Article 
CAS 

Google Scholar 
Liu, Y. et al. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat. Commun. 9, 2609 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Zou, X. et al. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 29, 1700404 (2017).Article 

Google Scholar 
Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).Article 
PubMed 

Google Scholar 
Liang, C. et al. Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 13, 86–95 (2020).Article 
CAS 

Google Scholar 
Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).Article 
CAS 
PubMed 

Google Scholar 
Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).Article 
CAS 
PubMed 

Google Scholar 
Du, K. et al. Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation. Nat. Commun. 13, 5448 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zhuang, L. et al. Ultrathin iron–cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 29, 1606793 (2017).Article 

Google Scholar 
Merrill, M. D. & Dougherty, R. C. Metal oxide catalysts for the evolution of O2 from H2O. J. Phys. Chem. C 112, 3655–3666 (2008).Article 
CAS 

Google Scholar 
Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014).Article 
CAS 
PubMed 

Google Scholar 
Corrigan, D. A. & Bendert, R. M. Effect of coprecipitated metal ions on the electrochemistry of nickel hydroxide thin films: cyclic voltammetry in 1 M KOH. J. Electrochem. Soc. 136, 723 (1989).Article 
CAS 

Google Scholar 
Li, X., Walsh, F. C. & Pletcher, D. Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Phys. Chem. Chem. Phys. 13, 1162–1167 (2011).Article 
CAS 
PubMed 

Google Scholar 
Hall, D. E. Ni(OH)2‐impregnated anodes for alkaline water electrolysis. J. Electrochem. Soc. 130, 317 (1983).Article 
CAS 

Google Scholar 
Ding, G. et al. Highly efficient and durable anion exchange membrane water electrolyzer enabled by a Fe–Ni3S2 anode catalyst. Adv. Energy Sustain. Res. 4, 2200130 (2023).Article 
CAS 

Google Scholar 
Karunadasa, H. I. et al. A molecular MoS2-edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012).Article 
CAS 
PubMed 

Google Scholar 
Wu, L. et al. Heterogeneous bimetallic phosphide Ni2P–Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 31, 2006484 (2021).Article 
CAS 

Google Scholar 
Cheng, W. et al. Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115–122 (2019).Article 
CAS 

Google Scholar 
Zhai, P. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel–iron layered double hydroxide for overall water splitting. Nat. Commun. 12, 4587 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Angulo, A., van der Linde, P., Gardeniers, H., Modestino, M. & Fernández Rivas, D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4, 555–579 (2020).Article 
CAS 

Google Scholar 
Iwata, R. et al. Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting. Joule 5, 887–900 (2021).Article 
CAS 

Google Scholar 
Spöri, C., Kwan, J. T. H., Bonakdarpour, A., Wilkinson, D. P. & Strasser, P. The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem. Int. Ed. 56, 5994–6021 (2017).Article 

Google Scholar 
Liu, H. et al. Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2. Nat. Commun. 13, 6382 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xiao, X., Wang, L., Wang, Z. & Wang, Z. Superheating of grain boundaries within bulk colloidal crystals. Nat. Commun. 13, 1599 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, R. et al. Layered structure causes bulk NiFe-layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 31, 1903909 (2019).Article 
CAS 

Google Scholar 
Wu, Y.-j et al. Evolution of cationic vacancy defects: a motif for surface restructuration of OER precatalyst. Angew. Chem. Int. Ed. 60, 26829–26836 (2021).Article 
CAS 

Google Scholar 
Li, Y. et al. Operando spectroscopies unveil interfacial FeOOH induced highly reactive β-Ni(Fe)OOH for efficient oxygen evolution. Appl. Catal. B 318, 121825 (2022).Article 
CAS 

Google Scholar 
Dionigi, F. & Strasser, P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 6, 1600621 (2016).Article 

Google Scholar 
Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).Article 
CAS 
PubMed 

Google Scholar 
Li, X. et al. Ultrafast room-temperature synthesis of self-supported NiFe-layered double hydroxide as large-current-density oxygen evolution electrocatalyst. Small 18, 2104354 (2022).Article 
CAS 

Google Scholar 
Xu, X. et al. Highly efficient all-3D-printed electrolyzer toward ultrastable water electrolysis. Nano Lett. 23, 629–636 (2023).Article 
CAS 
PubMed 

Google Scholar 
Yang, F., Kim, M. J., Brown, M. & Wiley, B. J. Alkaline water electrolysis at 25 A cm−2 with a microfibrous flow-through electrode. Adv. Energy Mater. 10, 2001174 (2020).Article 
CAS 

Google Scholar 
Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).Article 
CAS 

Google Scholar 
Mayerhöfer, B. et al. Electrochemical and mechanical stability of catalyst layers in anion exchange membrane water electrolysis. Int. J. Hydrog. Energy 47, 4304–4314 (2022).Article 

Google Scholar 
Liang, C. et al. Highly conductive and mechanically robust NiFe alloy aerogels: an exceptionally active and durable water oxidation catalyst. Small 18, 2203663 (2022).Article 
CAS 

Google Scholar 
Ding, Z. et al. High entropy intermetallic–oxide core–shell nanostructure as superb oxygen evolution reaction catalyst. Adv. Sustain. Syst. 4, 1900105 (2020).Article 
CAS 

Google Scholar 
Geiger, S. et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 1, 508–515 (2018).Article 
CAS 

Google Scholar 
Kim, Y. S. Scalable Elastomeric Membranes for Alkaline Water Electrolysis (US Department of Energy, 2019).Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836–840 (2013).Article 
CAS 
PubMed 

Google Scholar 
Khaselev, O. & Turner, J. A. A monolithic photovoltaic–photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).Article 
CAS 
PubMed 

Google Scholar 
García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).Article 
PubMed 

Google Scholar 
Abellán, G., Coronado, E., Martí-Gastaldo, C., Pinilla-Cienfuegos, E. & Ribera, A. Hexagonal nanosheets from the exfoliation of Ni2+–Fe3+ LDHs: a route towards layered multifunctional materials. J. Mater. Chem. 20, 7451–7455 (2010).Article 

Google Scholar 
Saiah, F. B. D., Su, B.-L. & Bettahar, N. Removal of Evans blue by using nickel–iron layered double hydroxide (LDH) nanoparticles: effect of hydrothermal treatment temperature on textural properties and dye adsorption. Macromol. Symp. 273, 125–134 (2008).Article 
CAS 

Google Scholar 
Zhang, J. et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, L. et al. Vertical growth of 2D amorphous-FePO4 nanosheet on Ni foam: outer and inner structural design for superior water splitting. Adv. Mater. 29, 1704574 (2017).Article 

Google Scholar 
McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013).Article 
CAS 
PubMed 

Google Scholar 
Jeon, S. S. et al. Active surface area and intrinsic catalytic oxygen evolution reactivity of NiFe LDH at reactive electrode potentials using capacitances. ACS Catal. 13, 1186–1196 (2023).Article 
CAS 

Google Scholar 
Liu, C. et al. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat. Catal. 4, 36–45 (2021).Article 
CAS 

Google Scholar 
Anantharaj, S. et al. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ. Sci. 11, 744–771 (2018).Article 
CAS 

Google Scholar 
Fan, L. et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 7, 10667 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
You, B., Liu, X., Jiang, N. & Sun, Y. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138, 13639–13646 (2016).Article 
CAS 
PubMed 

Google Scholar 
Sonoyama, N. & Sakata, T. Electrochemical continuous decomposition of chloroform and other volatile chlorinated hydrocarbons in water using a column type metal impregnated carbon fiber electrode. Environ. Sci. Technol. 33, 3438–3442 (1999).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles