Orthogonal bioconjugation targeting cysteine-containing peptides and proteins using alkyl thianthrenium salts

Saxon, E. & Bertozzi, C. R. Cell surface engineering by a modified staudinger reaction. Science 287, 2007–2010 (2000).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Prescher, J., Dube, D. H. & Bertozzi, C. R. Chemical remodelling of cell surfaces in living animals. Nature 430, 873–877 (2004).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).Article 
PubMed 

Google Scholar 
Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A. Stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).Article 
CAS 

Google Scholar 
Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).Article 
CAS 
PubMed 

Google Scholar 
Baskin, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA 104, 16793–16797 (2007).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Laughlin, S. T., Baskin, J. M., Amacher, S. L. & Bertozzi, C. R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Blackman, M. L., Royzen, M. & Fox, J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels–Alder reactivity. J. Am. Chem. Soc. 130, 13518–13519 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Devaraj, N. K., Weissleder, R. & Hilderbrand, S. A. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjug. Chem. 19, 2297–2299 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).Article 
CAS 
PubMed 

Google Scholar 
Hoyt, E. A., Cal, P. M. S. D., Oliveira, B. L. & Bernardes, G. J. L. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).Article 
CAS 

Google Scholar 
Tamura, T. & Hamachi, I. Chemistry for covalent modification of endogenous/native proteins: from test tubes to complex biological systems. J. Am. Chem. Soc. 141, 2782–2799 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chalker, J. M., Bernardes, G. J. L., Lin, Y. A. & Davis, B. G. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem. Asian J. 4, 630–640 (2009).Article 
CAS 
PubMed 

Google Scholar 
Gunnoo, S. B. & Madder, A. Chemical protein modification through cysteine. ChemBioChem 17, 529–553 (2016).Article 
CAS 
PubMed 

Google Scholar 
Frei, R. & Waser, J. A highly chemoselective and practical alkynylation of thiols. J. Am. Chem. Soc. 135, 9620–9623 (2013).Article 
CAS 
PubMed 

Google Scholar 
Frei, R. et al. Fast and highly chemoselective alkynylation of thiols with hypervalent iodine reagents enabled through a low energy barrier concerted mechanism. J. Am. Chem. Soc. 136, 16563–16573 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abegg, D. et al. Proteome-wide profiling of targets of cysteine reactive small molecules by using ethynyl benziodoxolone reagents. Angew. Chem. Int. Ed. 54, 10852–10857 (2015).Article 
CAS 

Google Scholar 
Tessier, R. et al. “Doubly orthogonal” labeling of peptides and proteins. Chem 5, 2243–2263 (2019).Article 
CAS 

Google Scholar 
Vinogradova, E. V., Zhang, C., Spokoyny, A. M., Pentelute, B. L. & Buchwald, S. L. Organometallic palladium reagents for cysteine bioconjugation. Nature 526, 687–691 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rojas, A. J. et al. Divergent unprotected peptide macrocyclization by palladium-mediated cysteine arylation. Chem. Sci. 8, 4257–4263 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Spokoyny, A. M. et al. A perfluoroaryl-cysteine SNAr chemistry approach to unprotected peptide stapling. J. Am. Chem. Soc. 135, 5946–5949 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dai, P. et al. Salt effect accelerates site-selective cysteine bioconjugation. ACS Cent. Sci. 2, 637–646 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Konievab, O. & Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 44, 5495–5551 (2015).Article 

Google Scholar 
Cooper, B. M. et al. Peptides as a platform for targeted therapeutics for cancer: peptide–drug conjugates (PDCs). Chem. Soc. Rev. 50, 1480–1494 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kang, M. S., Kong, T. W. S., Khoo, J. Y. X. & Loh, T.-P. Recent developments in chemical conjugation strategies targeting native amino acids in proteins and their applications in antibody–drug conjugates. Chem. Sci. 12, 13613–13647 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alas, M., Saghaeidehkordi, A. & Kaur, K. Peptide-drug conjugates with different linkers for cancer therapy. J. Med. Chem. 64, 216–232 (2021).Article 
CAS 
PubMed 

Google Scholar 
Conibear, A. C., Watson, E. E., Payne, R. J. & Becker, C. F. W. Native chemical ligation in protein synthesis and semi-synthesis. Chem. Soc. Rev. 47, 9046–9068 (2018).Article 
CAS 
PubMed 

Google Scholar 
Agouridas, V. et al. Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations. Chem. Rev. 119, 7328–7443 (2019).Article 
CAS 
PubMed 

Google Scholar 
Bao, G. et al. 1,3-Dipolar cycloaddition between dehydroalanines and C,N-cyclic azomethine imines: application to late-stage peptide modification. Angew. Chem. Int. Ed. 60, 5331–5338 (2021).Article 
CAS 

Google Scholar 
Zuo, Q. et al. Cysteine-specific multifaceted bioconjugation of peptides and proteins using 5-substituted 1,2,3-triazines. Adv. Sci. 11, 2308491 (2024).Article 
CAS 

Google Scholar 
Bao, G. et al. Dimethyl Sulfoxide/visible-light comediated chemoselective C–S bond formation between tryptophans and thiophenols enables site-selective functionalization of peptides. CCS Chem. 6, 1547–1556 (2024).Article 
CAS 

Google Scholar 
Bao, G. et al. Visible-light mediated deoxygenation of carboxylic acid for late-stage peptide modification targeting dehydroalanine. Org. Lett. 25, 8338–8343 (2023).Article 
CAS 
PubMed 

Google Scholar 
Yu, C. et al. Michael addition reaction between dehydroalanines and phosphites enabled the introduction of phosphonates into oligopeptides. Org. Lett. 26, 4767–4772 (2024).Article 
CAS 
PubMed 

Google Scholar 
Li, Y. et al. NDTP mediated direct rapid amide and peptide synthesis without epimerization. Org. Lett. 24, 1169–1174 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liu, Y. et al. Copper(I)-catalyzed late-stage introduction of oxime ethers into peptides at the carboxylic acid site. Org. Lett. 24, 9248–9253 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liu, Y. et al. Late-stage peptide modification and macrocyclization enabled by tertiary amine catalyzed tryptophan allylation. Chem. Sci. 15, 11099–11107 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guo, X. et al. Novel Feleucin-K3-derived peptides modified with sulfono-γ-AA building blocks targeting pseudomonas aeruginosa and methicillin-resistant staphylococcus aureus infections. J. Med. Chem. 66, 1254–1272 (2023).Article 
CAS 
PubMed 

Google Scholar 
Berger, F. et al. Site-selective and versatile aromatic C−H functionalization by thianthrenation. Nature 567, 223–228 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Chen, J., Li, J., Plutschack, M. B., Berger, F. & Ritter, T. Regio- and stereoselective thianthrenation of olefins to access versatile alkenyl electrophiles. Angew. Chem. Int. Ed. 59, 5616–5620 (2020).Article 
CAS 

Google Scholar 
Li, J. et al. Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination. Nat. Chem. 12, 56–62 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zhao, D., Petzold, R., Yan, J., Muri, D. & Ritter, T. Tritiation of aryl thianthrenium salts with a molecular palladium catalyst. Nature 600, 444–449 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Engl, P. S. et al. C−N cross-couplings for site-selective late-stage diversification via aryl sulfonium salts. J. Am. Chem. Soc. 141, 13346–13351 (2019).Article 
CAS 
PubMed 

Google Scholar 
Lansbergen, B., Granatino, P., Ritter, T. & Site-selective, C. −H. alkylation of complex arenes by a two-step aryl thianthrenation-reductive alkylation sequence. J. Am. Chem. Soc. 143, 7909–7914 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jia, H. et al. Trifluoromethyl thianthrenium triflate: a readily available trifluoromethylating reagent with formal CF3+, CF3•, and CF3− reactivity. J. Am. Chem. Soc. 143, 7623–7628 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alvarez, E. M. et al. Late-stage heteroarylation of hetero(aryl)sulfonium salts activated by α-amino alkyl radicals. Angew. Chem. Int. Ed. 60, 13609–13613 (2021).Article 
CAS 

Google Scholar 
Ye, F. et al. Aryl sulfonium salts for site-selective late-stage trifluoromethylation. Angew. Chem. Int. Ed. 58, 14615–14619 (2019).Article 
CAS 

Google Scholar 
Chen, C., Wang, M., Lu, H., Zhao, B. & Shi, Z. Enabling the use of alkyl thianthrenium salts in cross-coupling reactions by copper catalysis. Angew. Chem. Int. Ed. 60, 21756–21760 (2021).Article 
CAS 

Google Scholar 
Chen, C., Wang, Z.-J., Lu, H., Zhao, Y. & Shi, Z. Generation of non-stabilized alkyl radicals from thianthrenium salts for C–B and C–C bond formation. Nat. Commun. 12, 4526 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hartmann, P. et al. Chemoselective umpolung of thiols to episulfoniums for cysteine bioconjugation. Nat. Chem. 16, 380–388 (2024).Article 
CAS 
PubMed 

Google Scholar 
Tam, J. P., Wu, C. R., Liu, W. & Zhang, J. W. Disulfide bond formation in peptides by dimethyl sulfoxide. Scope and applications. J. Am. Chem. Soc. 113, 6657–6662 (1991).Article 
CAS 

Google Scholar 
Chalker, J. M. et al. Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem. Sci. 2, 1666–1672 (2011).Article 
CAS 

Google Scholar 
Danhier, F., Breton, A. L. & Préat, V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm. 9, 2961–2973 (2012).Article 
CAS 
PubMed 

Google Scholar 
Nieberler, M. et al. Exploring the role of RGD-recognizing integrins in cancer. Cancers 9, 116 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Waddington, M. A. et al. An organometallic strategy for cysteine borylation. J. Am. Chem. Soc. 143, 8661–8668 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gazvoda, M. et al. Palladium-mediated incorporation of carboranes into small molecules, peptides, and proteins. J. Am. Chem. Soc. 144, 7852–7860 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles