Diversity and specificity of molecular functions in cyanobacterial symbionts

Demoulin, C. F. et al. Cyanobacteria evolution: Insight from the fossil record. Free Radic. Biol. Med. 140, 206–223 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shestakov, S. V. & Karbysheva, E. A. The origin and evolution of cyanobacteria. Biol. Bull. Rev. 7, 259–272 (2017).Article 

Google Scholar 
Moreira, C., Vasconcelos, V. & Antunes, A. Phylogeny and biogeography of cyanobacteria and their produced toxins. Mar. Drugs 11, 4350–4369 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Fidor, A., Konkel, R. & Mazur-Marzec, H. Bioactive peptides produced by cyanobacteria of the genus nostoc: A review. Marine Drugs 17, (2019).Plaas, H. E. & Paerl, H. W. Toxic cyanobacteria: A growing threat to water and air quality. Environ. Sci. Technol. 55, 44–64 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. U.S.A. 110, 9824–9829 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Leão, P. N., Engene, N., Antunes, A., Gerwick, W. H. & Vasconcelos, V. The chemical ecology of cyanobacteria. Nat. Prod. Rep. 29, 372–391 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Usher, K. M., Bergman, B. & Raven, J. A. Exploring cyanobacterial mutualisms. Annu. Rev. Ecol. Evol. Syst. 38, 255–273 (2007).Article 

Google Scholar 
Coale, T. H. et al. Nitrogen-fixing organelle in a marine alga. Science 384, 217–222 (2024).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Bergman, B., Matveyev, A. & Rasmussen, U. Chemical signalling in cyanobacterial-plant symbioses. Trends Plant Sci. 1, 191–197 (1996).Article 

Google Scholar 
Warshan, D. et al. Genomic changes associated with the evolutionary transitions of nostoc to a plant symbiont. Mol. Biol. Evol. 35, 1160–1175 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hyvärinen, M., Härdling, R. & Tuomi, J. Cyanobacterial lichen symbiosis: The fungal partner as an optimal harvester. Oikos 98, 498–504 (2002).Article 
ADS 

Google Scholar 
De Vries, S. & De Vries, J. Evolutionary genomic insights into cyanobacterial symbioses in plants. Quant. Plant Biol. 3, (2022).Adams, D. G. & Duggan, P. S. Cyanobacteria-bryophyte symbioses. J. Exp. Bot. 59, 1047–1058 (2008).Article 
CAS 
PubMed 

Google Scholar 
Warshan, D. et al. Feathermoss and epiphytic Nostoc cooperate differently: Expanding the spectrum of plant–cyanobacteria symbiosis. ISME J. 11, 2821–2833 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Gómez, F., Furuya, K. & Takeda, S. Distribution of the cyanobacterium Richelia intracellularis as an epiphyte of the diatom Chaetoceros compressus in the western Pacific Ocean. J. Plankton Res. 27, 323–330 (2005).Article 

Google Scholar 
Álvarez, C., Navarro, J. A., Molina-Heredia, F. P. & Mariscal, V. Endophytic colonization of rice (Oryza sativa L.) by the symbiotic strain nostoc punctiforme PCC 73102. MPMI 33, 1040–1045 (2020).Article 
PubMed 

Google Scholar 
Chang, A. C. G., Chen, T., Li, N. & Duan, J. Perspectives on endosymbiosis in coralloid roots: Association of CYCADS AND CYANOBACTERIA. Front. Microbiol. 10, 1888 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Meeks, J. C. et al. An overview of the genome of nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth. Res. 70, 85–106 (2001).Article 
CAS 
PubMed 

Google Scholar 
Hillman, K. & Goodrich-Blair, H. Are you my symbiont? Microbial polymorphic toxins and antimicrobial compounds as honest signals of beneficial symbiotic defensive traits. Curr. Opin. Microbiol. 31, 184–190 (2016).Article 
CAS 
PubMed 

Google Scholar 
Vining, L. C. Functions of secondary metabolites. Annu. Rev. Microbiol. 44, 395–427 (1990).Article 
CAS 
PubMed 

Google Scholar 
Terlouw, B. R. et al. MIBiG 3.0: A community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res. 51, D603–D610 (2023).Article 
CAS 
PubMed 

Google Scholar 
Shibl, A. A. et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. https://doi.org/10.1073/pnas.2012088117/-/DCSupplemental.Modolon, F., Barno, A. R., Villela, H. D. M. & Peixoto, R. S. Ecological and biotechnological importance of secondary metabolites produced by coral-associated bacteria. J. Appl. Microbiol. 129, 1441–1457 (2020).Article 
CAS 
PubMed 

Google Scholar 
O’Brien, J. & Wright, G. D. An ecological perspective of microbial secondary metabolism. Curr. Opin. Biotechnol. 22, 552–558 (2011).Article 
PubMed 

Google Scholar 
Dittmann, E., Fewer, D. P. & Neilan, B. A. Cyanobacterial toxins: Biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev. 37, 23–43 (2013).Article 
CAS 
PubMed 

Google Scholar 
Calcott, M. J., Ackerley, D. F., Knight, A., Keyzers, R. A. & Owen, J. G. Secondary metabolism in the lichen symbiosis. Chem. Soc. Rev. 47, 1730–1760 (2018).Article 
CAS 
PubMed 

Google Scholar 
Calteau, A. et al. Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria. BMC Genom. 15, (2014).Gautam, K., Tripathi, J. K., Pareek, A. & Sharma, D. K. Growth and secretome analysis of possible synergistic interaction between green algae and cyanobacteria. J. Biosci. Bioeng. 127, 213–221 (2019).Article 
CAS 
PubMed 

Google Scholar 
Liaimera, A. et al. Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium nostoc punctiforme. Proc. Natl. Acad. Sci. U.S.A. 112, 1862–1867 (2015).Article 
ADS 

Google Scholar 
Álvarez, C. et al. Symbiosis between cyanobacteria and plants: From molecular studies to agronomic applications. J. Exp. Bot. 74, 6145–6157 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Leikoski, N. et al. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides. Chem. Biol. 20, 1033–1043 (2013).Article 
CAS 
PubMed 

Google Scholar 
Wang, H., Fewer, D. P. & Sivonen, K. Genome mining demonstrates the widespread occurrence of gene clusters encoding bacteriocins in cyanobacteria. PLoS One 6, e22384 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chatterjee, P., Schafran, P., Li, F. W. & Meeks, J. C. Nostoc talks back: Temporal patterns of differential gene expression during establishment of anthoceros-nostoc symbiosis. Mol. Plant-Microbe Interact. 35, 917–932 (2022).Article 
CAS 
PubMed 

Google Scholar 
Stenroos, S., Högnabba, F., Myllys, L., Hyvönen, J. & Thell, A. High selectivity in symbiotic associations of lichenized ascomycetes and cyanobacteria. Cladistics 22, 230–238 (2006).Article 

Google Scholar 
Rikkinen, J., Oksanen, I. & Lohtander, K. Lichen guilds share related cyanobacterial symbionts. Science 297, 357 (2002).Article 
CAS 
PubMed 

Google Scholar 
Gutierrez-Garcıa, K. et al. Cycad coralloid roots contain bacterial communities including cyanobacteria and Caulobacter spp. that encode niche-specific biosynthetic gene clusters. Genome Biol. Evol. 11, 319–334 (2019).Article 
PubMed 

Google Scholar 
Tagirdzhanova, G. et al. Evidence for a core set of microbial lichen symbionts from a global survey of metagenomes. BioRxiv https://doi.org/10.1101/2023.02.02.524463 (2023).Article 

Google Scholar 
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: A rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 20, 1203–1212 (2023).Article 
CAS 
PubMed 

Google Scholar 
Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36, 1925–1927 (2020).Article 
CAS 

Google Scholar 
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).Article 
CAS 
PubMed 

Google Scholar 
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).Article 
CAS 
PubMed 

Google Scholar 
Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Graham, E. D., Heidelberg, J. F. & Tully, B. J. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 12, 1861–1866 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ives, A. R. & Garland, T. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2010).Article 
PubMed 

Google Scholar 
Tung Ho, L. S. & Ané, C. A linear-time algorithm for gaussian and non-gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).Article 

Google Scholar 
Sanchez, S. et al. Expansion of novel biosynthetic gene clusters from diverse environments using SanntiS. https://doi.org/10.1101/2023.05.23.540769.Richardson, L. et al. MGnify: The microbiome sequence data analysis resource in 2023. Nucleic Acids Res. 51, D753–D759 (2023).Article 
CAS 
PubMed 

Google Scholar 
O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).Article 
PubMed 

Google Scholar 
Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, (2008).Sorenson, T. A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analysis of vegetation on Danish commons. Kong Dan Vidensk Selsk Biol. Skr. 5, 1–5 (1948).
Google Scholar 
Blin, K. et al. AntiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: A new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042–1051 (2010).Article 
PubMed 

Google Scholar 
Orme, D. et al. caper: Comparative analyses of phylogenetics and evolution in R. (2023).Prieto, M., Montané, N., Aragón, G., Martínez, I. & Rodríguez-Arribas, C. Cyanobacterial variability in lichen cephalodia. J. Fungi 9, 826 (2023).Article 
CAS 

Google Scholar 
Sanders, W. B. & Masumoto, H. Lichen algae: The photosynthetic partners in lichen symbioses. Lichenologist 53, 347–393 (2021).Article 

Google Scholar 
Decelle, J., Colin, S. & Foster, R. A. Photosymbiosis in marine planktonic protists. In Marine Protists (eds. Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N. & Not, F.) 465–500 (Springer Japan, 2015). https://doi.org/10.1007/978-4-431-55130-0_19.Flores, E., Romanovicz, D. K., Nieves-Morión, M., Foster, R. A. & Villareal, T. A. Adaptation to an intracellular lifestyle by a nitrogen-fixing, heterocyst-forming cyanobacterial endosymbiont of a diatom. Front. Microbiol. 13, 799362 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Cornejo-Castillo, F. M. et al. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nat. Commun. 7, 11071 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berman-Frank, I., Quigg, A., Finkel, Z. V., Irwin, A. J. & Haramaty, L. Nitrogen-fixation strategies and Fe requirements in cyanobacteria. Limnol. Oceanogr. 52, 2260–2269 (2007).Article 
ADS 

Google Scholar 
Hood, G., Ramachandran, V., East, A. K., Downie, J. A. & Poole, P. S. Manganese transport is essential for N2-fixation by Rhizobium leguminosarum in bacteroids from galegoid but not phaseoloid nodules. Environ. Microbiol. 19, 2715–2726 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yoch, D. C. yoch-1979-manganese-an-essential-trace-element-for-n2-fixation-by-rhodospirillum-rubrum-and-rhodopseudomonas-capsulata. J. Bacteriol. 140, 987–995 (1979).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boison, G., Steingen, C., Stal, L. J. & Bothe, H. The rice field cyanobacteria Anabaena azotica and Anabaena sp. CH1 express vanadium-dependent nitrogenase. Arch. Microbiol. 186, 367–376 (2006).Article 
CAS 
PubMed 

Google Scholar 
Nelson, J. M. et al. Complete genomes of symbiotic cyanobacteria clarify the evolution of vanadium-nitrogenase. Genome Biol. Evol. 11, 1959–1964 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hodkinson, B. P. et al. Lichen-symbiotic cyanobacteria associated with Peltigera have an alternative vanadium-dependent nitrogen fixation system. Eur. J. Phycol. 49, 11–19 (2014).Article 
CAS 

Google Scholar 
Darnajoux, R., Constantin, J., Miadlikowska, J., Lutzoni, F. & Bellenger, J.-P. Is vanadium a biometal for boreal cyanolichens?. New Phytol. 202, 765–771 (2014).Article 
CAS 
PubMed 

Google Scholar 
Harwood, C. S. Iron-only and vanadium nitrogenases: Fail-safe enzymes or something more?. Annu. Rev. Microbiol. 74, 247–266 (2020).Article 
CAS 
PubMed 

Google Scholar 
Stebegg, R., Schmetterer, G. & Rompel, A. Heterotrophy among Cyanobacteria. ACS Omega 8, 33098–33114 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoare, D. S., Ingram, L. O., Thurston, E. L. & Walkup, R. Dark heterotrophic growth of an endophytic blue-green alga. Arch. Mikrobiol. 78, 310–321 (1971).Article 
CAS 

Google Scholar 
Tredici, M. R., Margheri, M. C., Giovannetti, L., Philippis, R. D. & Vincenzini, M. Heterotrophic metabolism and diazotrophic growth of Nostoc sp. from Cycas circinalis.Blank, C. E. & Hinman, N. W. Cyanobacterial and algal growth on chitin as a source of nitrogen; ecological, evolutionary, and biotechnological implications. Algal Res. 15, 152–163 (2016).Article 

Google Scholar 
Sánchez-Vallet, A., Mesters, J. R. & Thomma, B. P. H. J. The battle for chitin recognition in plant-microbe interactions. FEMS Microbiol. Rev. 39, 171–183 (2015).Article 
PubMed 

Google Scholar 
López-Mondéjar, R., Tláskal, V., da Rocha, U. N. & Baldrian, P. Global distribution of carbohydrate utilization potential in the prokaryotic tree of life. mSystems 7, (2022).Puginier, C. et al. Phylogenomics reveals the evolutionary origins of lichenization in chlorophyte algae. Nat. Commun. 15, 4452 (2024).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nilsson, M., Rasmussen, U. & Bergman, B. Cyanobacterial chemotaxis to extracts of host and nonhost plants. FEMS Microbiol. Ecol. 55, 382–390 (2006).Article 
CAS 
PubMed 

Google Scholar 
Duggan, P. S., Thiel, T. & Adams, D. G. Symbiosis between the cyanobacterium Nostoc and the liverwort Blasia requires a CheR-type MCP methyltransferase. Symbiosis 59, 111–120 (2013).Article 
CAS 

Google Scholar 
Chen, M. Y. et al. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J. 15, 211–227 (2021).Article 
PubMed 

Google Scholar 
Green, E. R. & Mecsas, J. Bacterial secretion systems: An overview. Microbiol. Spectr. 4, (2016).Delepelaire, P. Type I secretion in gram-negative bacteria. Biochim. Biophys. Acta Mol. Cell Res. 1694, 149–161 (2004).Article 
CAS 

Google Scholar 
Lucke, M., Correa, M. G. & Levy, A. The role of secretion systems, effectors, and secondary metabolites of beneficial rhizobacteria in interactions with plants and microbes. Front. Plant Sci. 11, (2020).Kloosterman, A. M. et al. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lantibiotics. PLoS Biol. 18, (2020).Grimm, M. et al. The Lichens’ microbiota, still a mystery? Front. Microbiol. 12, (2021).Bell-Doyon, P., Laroche, J., Saltonstall, K. & Villarreal Aguilar, J. C. Specialized bacteriome uncovered in the coralloid roots of the epiphytic gymnosperm, Zamia pseudoparasitica. Environ. DNA 2, 418–428 (2020).Article 

Google Scholar 
Gagunashvili, A. N. & Andrésson, Ó. S. Distinctive characters of Nostoc genomes in cyanolichens. BMC Genom. 19, (2018).Leavitt, S. D. et al. Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol. Ecol. 24, 3779–3797 (2015).Article 
PubMed 

Google Scholar 
Jüriado, I., Kaasalainen, U., Jylhä, M. & Rikkinen, J. Relationships between mycobiont identity, photobiont specificity and ecological preferences in the lichen genus Peltigera (Ascomycota) in Estonia (northeastern Europe). Fungal Ecol. 39, 45–54 (2019).Article 

Google Scholar 
Bouchard, R. et al. Contrasting bacteriome of the hornwort Leiosporoceros dussii in two nearby sites with emphasis on the hornwort-cyanobacterial symbiosis. Symbiosis 81, 39–52 (2020).Article 

Google Scholar 

Hot Topics

Related Articles