Correlating physico-chemical properties of analytes with Hansen solubility parameters of solvents using machine learning algorithm for predicting suitable extraction solvent

Hansen, F., Øiestad, E. L. & Pedersen-Bjergaard, S. Bioanalysis of pharmaceuticals using liquid-phase microextraction combined with liquid chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 189, 113446 (2020).Article 
PubMed 

Google Scholar 
Prabu, S. L., Suriyaprakash, T. N. K. Extraction of Drug from the Biological Matrix: A Review (IntechOpen, 2012).Shah, V. P. The history of bioanalytical method validation and regulation: Evolution of a guidance document on bioanalytical methods validation. AAPS J. 9, E43 (2007).Article 
PubMed Central 

Google Scholar 
Chan, C. C., Lee, Y. C., Lam, H., Zhang, X.-M. Analytical Method Validation and Instrument Performance Verification (Wiley, 2004).Murugan, S., Pravallika, N., Sirisha, P. & Chandrakala, K. A review on bioanalytical method development and validation by using LC-MS/MS. J. Chem. Pharm. Sci. 6, 41–45 (2013).
Google Scholar 
Sangster, T. & Oliver, M. Interview: Challenges faced by the modern bioanalytical laboratory. Bioanalysis. 4, 2329–2333 (2012).Article 
PubMed 

Google Scholar 
Pawliszyn, J. Sample preparation: quo vadis?. Anal. Chem. 75, 2543–2558 (2003).Article 
PubMed 

Google Scholar 
Wells, D. A. High throughput bioanalytical sample preparation-methods and automation strategies. Prog. Pharm. Biomed. Anal. 2003, (2003).Kyle, P. B. Toxicology: GCMS. In Mass Spectrom. Clin. Lab. 131–163 (Elsevier, 2017).Kumar, A., Kishore, L., Kaur, N. & Nair, A. Method development and validation: Skills and tricks. Chronicles Young Sci. 3, 3 (2012).Article 

Google Scholar 
Rawa-Adkonis, M., Wolska, L., Przyjazny, A. & Namieśnik, J. Sources of errors associated with the determination of PAH and PCB analytes in water samples. Anal. Lett. 39, 2317–2331 (2006).Article 

Google Scholar 
Temerdashev, Z. A., Musorina, T. N., Chervonnaya, T. A. & Arutyunyan, Z. V. Possibilities and limitations of solid-phase and liquid extraction for the determination of polycyclic aromatic hydrocarbons in environmental samples. J. Anal. Chem. 76, 1357–1370 (2021).Article 

Google Scholar 
Hansen, C. M. Hansen Solubility Parameters: A User’s Handbook (CRC Press, 2007).Hansen, C. M. Polymer science applied to biological problems: Prediction of cytotoxic drug interactions with DNA. Eur. Polym. J. 44, 2741–2748 (2008).Article 

Google Scholar 
Tait, J. G. et al. Determination of solvent systems for blade coating thin film photovoltaics. Adv. Funct. Mater. 25, 3393–3398 (2015).Article 

Google Scholar 
Wang, S.-H. et al. Hansen solubility parameter analysis on the dispersion of zirconia nanocrystals. J. Colloid Interface Sci. 407, 140–147 (2013).Article 
ADS 
PubMed 

Google Scholar 
Wieneke, J. U., Kommoß, B., Gaer, O., Prykhodko, I. & Ulbricht, M. Systematic investigation of dispersions of unmodified inorganic nanoparticles in organic solvents with focus on the Hansen solubility parameters. Ind. Eng. Chem. Res. 51, 327–334 (2012).Article 

Google Scholar 
Süß, S., Sobisch, T., Peukert, W., Lerche, D. & Segets, D. Determination of Hansen parameters for particles: A standardized routine based on analytical centrifugation. Adv. Powder Technol. 29, 1550–1561 (2018).Article 

Google Scholar 
Zuaznabar-Gardona, J. C. & Fragoso, A. Determination of the Hansen solubility parameters of carbon nano-onions and prediction of their dispersibility in organic solvents. J. Mol. Liq. 294, 111646 (2019).Article 

Google Scholar 
Dondeti, S., Kannan, K. & Manavalan, R. Principal component artificial neural network calibration models for simultaneous spectrophotometric estimation of phenobarbitone and phenytoin sodium in tablets. Acta Chim. Slov. 52, 138–144 (2005).
Google Scholar 
Fouad, M. A., Tolba, E. H., El-Shal, M. A., El Kerdawy, A. M. QSRR modeling for the chromatographic retention behavior of some β-lactam antibiotics using forward and firefly variable selection algorithms coupled with multiple linear regression. J. Chromatogr. A (2018).Vaghela, A., Patel, A., Patel, A., Vyas, A. & Patel, N. Sample preparation in bioanalysis: A review. Int. J. Sci. Technol. Res. 5, 6–10 (2016).
Google Scholar 
Díaz de los Ríos, M., Hernández Ramos, E. Determination of the Hansen solubility parameters and the Hansen sphere radius with the aid of the solver add-in of Microsoft Excel. SN Appl. Sci. 2, 1–7 (2020).- The PubChem Project. https://pubchem.ncbi.nlm.nih.gov/.- Data Science Platform|RapidMiner. https://rapidminer.com/.Harahap, Y., Azizah, N. & Andalusia, R. Simultaneous analytical method development of 6-mercaptopurine and 6-methylmercaptopurine in plasma by high performance liquid chromatography-photodiode array. J. Young Pharm. 9, S29–S34. https://doi.org/10.5530/jyp.2017.1s.8 (2017).Article 

Google Scholar 
Chandramowli, B. & Rajkamal, B. B. A validated LC-MS/MS method for the estimation of boceprevir and boceprevir D6 (IS) in human plasma employing liquid-liquid extraction. Int. J. Pharm. Pharm. Sci. 8, 133–137 (2016).
Google Scholar 
Wang, Y. Y. et al. A sensitive, simple and rapid HPLC-MS/MS method for simultaneous quantification of buprenorpine and its N-dealkylated metabolite norbuprenorphine in human plasma. J. Pharm. Anal. 3, 221–228. https://doi.org/10.1016/j.jpha.2012.12.002 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Mürdter, T. E. et al. Sensitive and rapid quantification of busulfan in small plasma volumes by liquid chromatography-electrospray mass spectrometry. Clin. Chem. 47, 1437–1442. https://doi.org/10.1093/clinchem/47.8.1437 (2001).Article 
PubMed 

Google Scholar 
Park, M. S., Shim, W. S., Yim, S. V. & Lee, K. T. Development of simple and rapid LC-MS/MS method for determination of celecoxib in human plasma and its application to bioequivalence study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 902, 137–141. https://doi.org/10.1016/j.jchromb.2012.06.016 (2012).Article 

Google Scholar 
Oswald, S., Peters, J., Venner, M. & Siegmund, W. LC-MS/MS method for the simultaneous determination of clarithromycin, rifampicin and their main metabolites in horse plasma, epithelial lining fluid and broncho-alveolar cells. J. Pharm. Biomed. Anal. 55, 194–201. https://doi.org/10.1016/j.jpba.2011.01.019 (2011).Article 
PubMed 

Google Scholar 
Xie, Z. et al. Development and full validation of a sensitive quantitative assay for the determination of clemastine in human plasma by liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 44, 924–930. https://doi.org/10.1016/j.jpba.2007.03.019 (2007).Article 
PubMed 

Google Scholar 
Rechberger, G. N. et al. Quantitative analysis of clindamycin in human plasma by liquid chromatography/electrospray ionisation tandem mass spectrometry using d1-N-ethylclindamycin as internal standard. Rapid Commun. Mass Spectrom. 17, 135–139. https://doi.org/10.1002/rcm.887 (2003).Article 
ADS 
PubMed 

Google Scholar 
Mohammadi, A., Kanfer, I., Sewram, V. & Walker, R. B. An LC-MS-MS method for the determination of cyclizine in human serum, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 824, 148–152. https://doi.org/10.1016/j.jchromb.2005.07.015 (2005).Article 

Google Scholar 
Jiang, H. et al. A sensitive and accurate liquid chromatography–tandem mass spectrometry method for quantitative determination of the novel hepatitis C NS5A inhibitor BMS-790052 (daclastasvir) in human plasma and urine. J. Chromatogr. A. 1245, 117–121. https://doi.org/10.1016/j.chroma.2012.05.028 (2012).Article 
PubMed 

Google Scholar 
Hotha, K. K., Bharathi, D. V. & Jagadeesh, B. Development and validation of a highly sensitive LC-MS/MS method for quantitation of dexlansoprazole in human plasma: Application to a human pharmacokinetic study. Biomed. Chromatogr. 26, 192–198. https://doi.org/10.1002/bmc.1645 (2012).Article 
PubMed 

Google Scholar 
Arisoy, G. G. et al. Development and validation of HPLC-UV method for the determination of diclofenac in human plasma with application to a pharmacokinetic study. Turk. J. Pharm. Sci. 13, 292–299. https://doi.org/10.4274/tjps.2016.02 (2016).Article 

Google Scholar 
Liu, Y. et al. Determination of diethylstilbestrol in human plasma with measurement uncertainty estimation by liquid chromatography-tandem mass spectrometry. J. Liq. Chromatogr. Relat. Technol. 37, 353–366. https://doi.org/10.1080/10826076.2012.745140 (2014).Article 

Google Scholar 
Liu, F., Luo, Y., Feng, J. L. & Hu, X. Y. Determination of dihydroetorphine in biological fluids by gas chromatography-mass spectrometry using selected-ion monitoring. J. Chromatogr. B Biomed. Appl. 679, 113–118. https://doi.org/10.1016/0378-4347(96)00044-8 (1996).Article 
PubMed 

Google Scholar 
Dasandi, B., Shah, S. & Shivprakash,. Development and validation of a high throughput and robust LC-MS/MS with electrospray ionization method for simultaneous quantitation of diltiazem and its two metabolites in human plasma: Application to a bioequivalence study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877, 791–798. https://doi.org/10.1016/j.jchromb.2009.02.016 (2009).Article 

Google Scholar 
Nichol, H., Vine, J. & Thomas, J. Quantification of doxapram in blood, plasma and urine. J. Chromatogr. B Biomed. Appl. 182, 191–200 (1980).Article 

Google Scholar 
Kohlhof, K. J., Stump, D. & Zizzamia, J. A. Analysis of doxylamine in plasma by high-performance liquid chromatography. J. Pharm. Sci. 72, 961–962. https://doi.org/10.1002/jps.2600720834 (1983).Article 
PubMed 

Google Scholar 
Ramachandran, G. et al. Simple and rapid liquid chromatography method for determination of efavirenz in plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 835, 131–135. https://doi.org/10.1016/j.jchromb.2006.03.014 (2006).Article 

Google Scholar 
Sythana, S., Lavanya, A. S. K., Sankar, P. & Shanmugasundaram, V. Determination of entecavir in human plasma by LC-MS/MS and method validtion. Int. J. PharmTech Res. 4, 1721–1729 (2012).
Google Scholar 
Bonnaire, Y., Plou, P., Pages, N., Boudene, C. & Jouany, J. M. GC/MS confirmatory method for etorphine in horse urine. J. Anal. Toxicol. 13, 193–196. https://doi.org/10.1093/jat/13.4.193 (1989).Article 
PubMed 

Google Scholar 
Chen, X., Gardner, E. R., Price, D. K. & Figg, W. D. Development and validation of an LC-MS assay for finasteride and its application to prostate cancer prevention trial sample analysis. J. Chromatogr. Sci. 46, 356–361. https://doi.org/10.1093/chromsci/46.4.356 (2008).Article 
PubMed 

Google Scholar 
Liapatas, G., Kousoulos, C. & Koupparis, M. A. LC-Ion Trap-MS method for the determination of fluconazole in plasma for bioequivalence studies of pharmaceutical formulations using semi-automated sample handling. J. Liq. Chromatogr. Relat. Technol. 38, 1808–1814. https://doi.org/10.1080/10826076.2015.1113545 (2015).Article 

Google Scholar 
Bae, J. W. et al. HPLC analysis of plasma glipizide and its application to pharmacokinetic study. J. Liq. Chromatogr. Relat. Technol. 32, 1969–1977. https://doi.org/10.1080/10826070903091712 (2009).Article 

Google Scholar 
Gonçalves, T. M. et al. Determination of indinavir in human plasma and its use in pharmacokinetic study. Rev. Bras. Ciencias Farm. J. Pharm. Sci. 43, 639–647. https://doi.org/10.1590/S1516-93322007000400018 (2007).Article 

Google Scholar 
Dwivedi, A., Singh, B., Sharma, S., Lokhandae, R. S. & Dubey, N. Ultra-performance liquid chromatography electrospray ionization-tandem mass spectrometry method for the simultaneous determination of itraconazole and hydroxy itraconazole in human plasma. J. Pharm. Anal. 4, 316–324. https://doi.org/10.1016/j.jpha.2013.09.005 (2014).Article 
PubMed 

Google Scholar 
Hu, M. L., Xu, M. & Ye, Q. Quantitative determination of ketoconazole by UPLC-MS/MS in human plasma and its application to pharmacokinetic study. Drug Res. (Stuttg) 64, 548–552. https://doi.org/10.1055/s-0033-1363966 (2014).Article 
PubMed 

Google Scholar 
Tang, J., Zhu, R., Zhao, R., Cheng, G. & Peng, W. Ultra-performance liquid chromatography-tandem mass spectrometry for the determination of lacidipine in human plasma and its application in a pharmacokinetic study. J. Pharm. Biomed. Anal. 47, 923–928. https://doi.org/10.1016/j.jpba.2008.04.018 (2008).Article 
PubMed 

Google Scholar 
Wichitnithad, W., Jithavech, P., Sanphanya, K., Vicheantawatchai, P. & Rojsitthisak, P. Determination of levocetirizine in human plasma by LC-MS-MS: Validation and application in a pharmacokinetic study. J. Chromatogr. Sci. 53, 1663–1672. https://doi.org/10.1093/chromsci/bmv069 (2015).Article 
PubMed 

Google Scholar 
Ahmed, R. M., Hadad, G. M., El-Gendy, A. E. & Ibrahim, A. Development of HPLC method for determination of sitagliptin in human plasma using fluorescence detector by experimental design approach. Anal. Chem. Lett. 8, 813–828. https://doi.org/10.1080/22297928.2018.1545603 (2018).Article 

Google Scholar 
Kazemifard, A. G., Gholami, K. & Dabirsiaghi, A. Optimized determination of lorazepam in human serum by extraction and high-performance liquid chromatographic analysis. Acta Pharm. 56, 481–488 (2006).PubMed 

Google Scholar 
Young, H. K., Hye, Y. J., Park, E. S., Chae, S. W. & Hye, S. L. Liquid chromatography-electrospray ionization tandem mass spectrometric determination of lornoxicam in human plasma. Arch. Pharm. Res. 30, 905–910. https://doi.org/10.1007/bf02978844 (2007).Article 

Google Scholar 
Siddiraju, S., Lal Prasanth, M. L. & Sirisha, T. A novel LC-MS/MS assay for methylprednisolone in human plasma and its pharmacokinetic application. Asian J. Pharm. Sci. 11, 459–468. https://doi.org/10.1016/j.ajps.2015.06.005 (2016).Article 

Google Scholar 
Lee, H. W. et al. Determination of metoclopramide in human plasma using hydrophilic interaction chromatography with tandem mass spectrometry. J Chromatogr. B Anal. Technol. Biomed. Life Sci. 877, 1716–1720. https://doi.org/10.1016/j.jchromb.2009.04.027 (2009).Article 

Google Scholar 
Chen, Y. A. & Hsu, K. Y. Development of a LC-MS/MS-based method for determining metolazone concentrations in human plasma: Application to a pharmacokinetic study. J. Food Drug Anal. 21, 154–159. https://doi.org/10.1016/j.jfda.2013.05.004 (2013).Article 

Google Scholar 
Dalton, J. T., Geuns, E. R. & Lai-Sim Au, J. High-performance liquid chromatographic determination of mitomycin C in rat and human plasma and urine. J. Chromatogr. B Biomed. Sci. Appl. 495, 330–337. https://doi.org/10.1016/S0378-4347(00)82641-9 (1989).Article 

Google Scholar 
Janchawee, B. et al. A high-performance liquid chromatographic method for determination of mitragynine in serum and its application to a pharmacokinetic study in rats. Biomed. Chromatogr. 21, 176–183. https://doi.org/10.1002/bmc (2007).Article 
PubMed 

Google Scholar 
Sahoo, N. K., Sahu, M., Rao, P. S. & Ghosh, G. Development and validation of liquid chromatography-mass spectroscopy/mass spectroscopy method for quantitative analysis of naproxen in human plasma after liquid-liquid extraction. Trop. J. Pharm. Res. 13, 1503–1510. https://doi.org/10.4314/tjpr.v13i9.17 (2014).Article 

Google Scholar 
Chen, H. et al. Development and validation of a rapid andsensitive UHPLC-MS/MS method for thedetermination of paliperidone in beagle dog plasma, Asian. J. Pharm. Sci. 9, 286–292. https://doi.org/10.1016/j.ajps.2014.07.008 (2014).Article 

Google Scholar 
Kaddoumi, A., Mori, T., Nakashima, M. N., Wada, M. & Nakashima, K. High performance liquid chromatography with fluorescence detection for the determination of phenylpropanolamine in human plasma and rat’s blood and brain microdialysates using DIB-Cl as a label. J. Pharm. Biomed. Anal. 34, 643–650. https://doi.org/10.1016/S0731-7085(03)00633-2 (2004).Article 
PubMed 

Google Scholar 
Souri, E., Jalalizadeh, H. & Saremi, S. Development and validation of a simple and rapid Hplc method for determination of pioglitazone in human plasma and its application to a pharmacokinetic study. J. Chromatogr. Sci. 46, 809–812. https://doi.org/10.1093/chromsci/46.9.809 (2008).Article 
PubMed 

Google Scholar 
Matabosch, X. et al. Detection and characterization of prednisolone metabolites in human urine by LC-MS/MS. J. Mass Spectrom. 50, 633–642. https://doi.org/10.1002/jms.3571 (2015).Article 
ADS 
PubMed 

Google Scholar 
Nirogi, R., Kandikere, V. & Mudigonda, K. Sensitive liquid chromatography positive electrospray tandem mass spectrometry method for the quantitation of tegaserod in human plasma using liquid-liquid extraction. J. Chromatogr. Sci. 47, 164–169. https://doi.org/10.1093/chromsci/47.2.164 (2009).Article 
PubMed 

Google Scholar 
Gilant, E., Kaza, M., Szlagowska, A., Serafin-Byczak, K. & Rudzki, P. J. Validated HPLC method for determination of temozolomide in human plasma. Acta Pol. Pharm. Drug Res. 69, 1347–1355 (2012).
Google Scholar 
Langmann, P. et al. High performance liquid chromatographic method for the determination of HIV-1 protease inhibitor tipranavir in plasma of patients during highly active antiretroviral therapy. Eur. J. Med. Res. 13, 52–58 (2008).PubMed 

Google Scholar 
Singhal, P. et al. Enantiomeric separation of verapamil and its active metabolite, norverapamil, and simultaneous quantification in human Plasma by LC-ESI-MS-MS. J. Chromatogr. Sci. 50, 839–848. https://doi.org/10.1093/chromsci/bms080 (2012).Article 
PubMed 

Google Scholar 
Yang, F., Wang, H., Hu, P. & Jiang, J. Validation of an UPLC-MS-MS method for quantitative analysis of vincristine in human urine after intravenous administration of vincristine sulfate liposome injection. J. Chromatogr. Sci. 53, 974–978. https://doi.org/10.1093/chromsci/bmu164 (2015).Article 
PubMed 

Google Scholar 
Qian, J. et al. Rapid and sensitive determination of vinorelbine in human plasma by liquid chromatography-tandem mass spectrometry and its pharmacokinetic application. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 879, 662–668. https://doi.org/10.1016/j.jchromb.2011.01.039 (2011).Article 

Google Scholar 
Jiang, Y. et al. Development and validation of a liquid chromatography-tandem mass spectrometry method for the determination of zofenopril and its active metabolite zofenoprilat in human plasma. J. Pharm. Biomed. Anal. 55, 527–532. https://doi.org/10.1016/j.jpba.2011.02.010 (2011).Article 
PubMed 

Google Scholar 
Patil, J. S., Suresh, S., Sureshbabu, A. & Rajesh, M. Development and validation of liquid chromatography-Mass spectrometry method for the estimation of rifampicin in plasma. Indian J. Pharm. Sci. 73, 558–563. https://doi.org/10.4103/0250-474X.99014 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Lu, C. et al. Simultaneous determination of ivabradine and N-desmethylivabradine in human plasma and urine using a LC-MS/MS method: Application to a pharmacokinetic study. Acta Pharm. Sin. B. 2, 205–212. https://doi.org/10.1016/j.apsb.2012.01.004 (2012).Article 

Google Scholar 
Zhou, N. et al. Development and validation of LC-MS method for the determination of hydroxyzine hydrochloride in human plasma and subsequent application in a bioequivalence study. Chromatographia. 66, 481–486. https://doi.org/10.1365/s10337-007-0372-x (2007).Article 

Google Scholar 
Yuan, G., Rong, L., Duanyun, S. & Changxiao, L. Determination of 5-fluorouracil in human plasma by highperformance liquid chromatography (HPLC). Trans. Tianjin Univ. 16, 167–173. https://doi.org/10.1007/s12209 (2010).Article 

Google Scholar 
Shah, I., Baker, J., Batron, S. J. & Naughton, D. P. A novel method for determination of fenofibric acid in human plasma using HPLC-UV: Application to a pharmacokinetic study of new formulations. J. Anal. Bioanal. Tech. S 12, 5–8. https://doi.org/10.4172/2155-9872.s12-009 (2014).Article 

Google Scholar 
Dalmora, S. L. et al. Determination of phenobarbital in human plasma by a specific liquid chromatography method: Application to a bioequivalence study. Quim. Nova. 33, 124–129. https://doi.org/10.1590/S0100-40422010000100023 (2010).Article 

Google Scholar 
Satyadev, T. N., Ch, B. & Sundar, B. S. Development and validation of high performance liquid chromatographic method for the determination of Dolutegravir in human plasma. Der. Pharm. Sin. 6(4), 65–72 (2015).
Google Scholar 
Kim, M. S. et al. Quantification of nimesulide in human plasma by high-performance liquid chromatography with ultraviolet detector (HPLC-UV): Application to pharmacokinetic studies in 28 healthy korean subjects. J. Chromatogr. Sci. 50, 396–400. https://doi.org/10.1093/chromsci/bms014 (2012).Article 
PubMed 

Google Scholar 
Park, J. H. et al. Quantification of isradipine in human plasma using LC-MS/MS for pharmacokinetic and bioequivalence study. J Chromatogr. B Anal. Technol. Biomed. Life Sci. 877, 59–64. https://doi.org/10.1016/j.jchromb.2008.11.021 (2009).Article 

Google Scholar 
Manimala, M. & Karpagam, S. LC-MS-MS method for the determination of digoxin in human plasma. Int. J. Pharm. Pharm. Sci. 5, 131–132 (2013).
Google Scholar 
Zhao, Y. et al. Determination of nimodipine in human plasma by HPLC-ESI-MS and its application to a bioequivalence study. J. Chromatogr. Sci. 48, 81–85. https://doi.org/10.1093/chromsci/48.2.81 (2010).Article 
PubMed 

Google Scholar 
Salem, I. I., Alkhatib, M. & Najib, N. LC-MS/MS determination of betamethasone and its phosphate and acetate esters in human plasma after sample stabilization. J. Pharm. Biomed. Anal. 56, 983–991. https://doi.org/10.1016/j.jpba.2011.07.020 (2011).Article 
PubMed 

Google Scholar 
Jaussaud, P. et al. Pharmacokinetics of tolfenamic acid in the horse. Equine Vet. J. Suppl. https://doi.org/10.1111/j.2042-3306.1992.tb04778.x (1992).Article 
PubMed 

Google Scholar 
Yan, M. et al. Quantification of prochlorperazine maleate in human plasma by liquid chromatography-mass spectrometry: Application to a bioequivalence study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877, 3243–3247. https://doi.org/10.1016/j.jchromb.2009.07.038 (2009).Article 

Google Scholar 
Kang, W., Liu, K. H., Ryu, J. Y. & Shin, J. G. Simultaneous determination of ebastine and its three metabolites in plasma using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 813, 75–80 (2004).Article 

Google Scholar 

Hot Topics

Related Articles