Synthesis and controlled radical polymerization of axially chiral monomers with a binaphthyl skeleton

Gong W, Wang W, Dong JQ, Pan XC, Liu Y, Yang HB, et al. Recent progress of chiral hierarchical assemblies from a Chinese perspective. CCS Chem. 2023;5:2736–59.Article 

Google Scholar 
Shen J, Okamoto Y. Efficient separation of enantiomers using stereoregular optically active polymers. Chem Rev. 2016;116:1094–138.Article 
PubMed 

Google Scholar 
Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem Rev. 2016;116:13752–990.Article 
PubMed 

Google Scholar 
Okamoto Y, Nakano T. Asymmetric polymerization. Chem Rev. 1994;94:349–72.Article 

Google Scholar 
Pino P, Lorenzi GP. Optically active vinyl polymers. II. the optical activity of isotactic and block polymers of optically active α-olefins in dilute hydrocarbon solution. J Am Chem Soc. 1960;82:4745–7.Article 

Google Scholar 
Wang R, Li XF, Bai JW, Zhang J, Liu AH, Wan XH. Chiroptical and thermotropic properties of helical styrenic polymers: effect of achiral group. Macromolecules. 2014;47:1553–62.Article 

Google Scholar 
Maeda K, Ishikawa M, Yashima E. Macromolecular helicity induction in a cationic polyacetylene assisted by an anionic polyisocyanide with helicity memory in water: replication of macromolecular helicity. J Am Chem Soc. 2004;126:15161–6.Article 
PubMed 

Google Scholar 
Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Helical polymers: synthesis, structures, and functions. Chem Rev. 2009;109:6102–211.Article 
PubMed 

Google Scholar 
Okamoto Y, Suzuki K, Ohta K, Hatada K, Yuki H. Optically active poly(triphenylmethyl methacrylate) with one-handed helical conformation. J Am Chem Soc. 1979;101:4763–5.Article 

Google Scholar 
Nakano T, Okamoto Y, Hatada K. Asymmetric polymerization of triphenylmethyl methacrylate leading to a one-handed helical polymer: mechanism of polymerization. J Am Chem Soc. 1992;114:1318–29.Article 

Google Scholar 
Kajitani T, Okoshi K, Yashima E. Helix-sense-controlled polymerization of optically active phenyl isocyanides. Macromolecules. 2008;41:1601–11.Article 

Google Scholar 
Xue YX, Zhu YY, Gao LM, He XX, Liu N, Zhang WY, et al. Air-stable (phenylbuta-1,3-diynyl) palladium (II) complexes: highly active initiators for living polymerization of isocyanides. J Am Chem Soc. 2014;136:4706–13.Article 
PubMed 

Google Scholar 
Chu JH, Xu XH, Kang SM, Liu N, Wu ZQ. Fast living polymerization and helix-sense-selective polymerization of diazoacetates using air-stable palladium (II) catalysts. J Am Chem Soc. 2018;140:17773–81.Article 
PubMed 

Google Scholar 
Tang HZ, Lu YJ, Tian GL, Capracotta MD, Novak BM. Stable helical polyguanidines: poly{N-(1-anthryl)-N’-[(R)-and/or (S)-3,7-dimethyloctyl] guanidines}. J Am Chem Soc. 2004;126:3722–3.Article 
PubMed 

Google Scholar 
Hoshikawa N, Hotta Y, Okamoto Y. Stereospecific radical polymerization of N-triphenylmethylmethacrylamides leading to highly isotactic helical polymers. J Am Chem Soc. 2003;125:12380–1.Article 
PubMed 

Google Scholar 
Nakano T, Shikisai Y, Okamoto Y. Helix-sense-selective free radical polymerization of 1-phenyldibenzosuberyl methacrylate. Polym J. 1996;28:51–60.Article 

Google Scholar 
Tamai Y, Qian P, Matsunaga K, Miyano S. Synthesis of Optically-active polymethacrylates bearing axially dissymmetric 1,1′-binaphthalene skeleton as a pendant group and their optical resolution ability as chiral adsorbent for HPLC. Bull Chem Soc Jpn 1992;65:817–23.Article 

Google Scholar 
Hawker CJ, Bosman AW, Harth E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev. 2001;101:3661–88.Article 
PubMed 

Google Scholar 
Perrier S. 50th Anniversary perspective: RAFT polymerization-a user guide. Macromolecules. 2017;50:7433–47.Article 

Google Scholar 
Pan XC, Fantin M, Yuan F, Matyjaszewski K. Externally controlled atom transfer radical polymerization. Chem Soc Rev. 2018;47:5457–90.Article 
PubMed 

Google Scholar 
Parmar D, Sugiono E, Raja S, Rueping M. Complete field guide to asymmetric BINOL-phosphate derived brønsted acid and metal catalysis: history and classification by mode of activation; brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem Rev. 2014;114:9047–153.Article 
PubMed 

Google Scholar 
Lin P. 1,1′-Binaphthyl dimers, oligomers, and polymers: molecular recognition, asymmetric catalysis, and new materials. Chem Rev. 1998;98:2405–94.Article 

Google Scholar 
Chen Y, Yekta S, Yudin AK. Modified BINOL ligands in asymmetric catalysis. Chem Rev. 2003;103:3155–211.Article 
PubMed 

Google Scholar 
Hanazaki I, Akimoto H. Optical rotatory power of 2,2′-dihydroxy-1,1′-binaphthyl and related compounds. J Am Chem Soc. 1972;94:4102–6.Article 

Google Scholar 
Bari LD, Pescitelli G, Salvadori P. Conformational study of 2,2‘-homosubstituted 1,1‘-binaphthyls by means of uv and cd spectroscopy. J Am Chem Soc. 1999;121:7998–8004.Article 

Google Scholar 
Takaishi K, Murakami S, Yoshinami F, Ema T. Binaphthyl-bridged pyrenophanes: intense circularly polarized luminescence based on a d2 symmetry strategy. Angew Chem Int Ed. 2022;61:e202204609.Article 

Google Scholar 
Zhang HK, Zheng XY, Kwok R, Wang J, Leung N, Shi L, et al. In situ monitoring of molecular aggregation using circular dichroism. Nat Commun. 2018;9:4961–9.Article 
PubMed 
PubMed Central 

Google Scholar 
Wang YX, Li YZ, Liu S, Li F, Zhu CJ, Li SH, et al. Regulating circularly polarized luminescence signals of chiral binaphthyl-based conjugated polymers by tuning dihedral angles of binaphthyl moieties. Macromolecules. 2016;49:5444–51.Article 

Google Scholar 
Ikai T, Mishima N, Matsumoto T, Miyoshi S, Oki K, Yashima E. 2,2′-Tethered binaphthyl-embedded one-handed helical ladder polymers: impact of the tether length on helical geometry and chiroptical property. Angew Chem Int Ed. 2024;63:e202318712.Article 

Google Scholar 
Lv CN, He CZ, Pan XC. Oxygen initiated and regulated controlled radical polymerization under ambient conditions. Angew Chem Int Ed. 2018;57:9430–3.Article 

Google Scholar 
Wang QY, Bai FY, Wang YL, Niu FS, Zhang YF, Mi QX, et al. Photoinduced ion-pair inner-sphere electron transfer-reversible addition−fragmentation chain transfer polymerization. J Am Chem Soc. 2022;143:19167–77.
Google Scholar 
Kohlhaas M, Zähres M, Mayer C, Engeser M, Merten C, Niemeyer J. Chiral hydrogen-bonded supramolecular capsules: synthesis, characterization and complexation of C70. Chem Commun. 2019;55:3298–301.Article 

Google Scholar 
Le QP, Nguyen TS, May AJ. A general method for the enantioselective synthesis of α-chiral heterocycles. Org Lett. 2012;14:6104–7.Article 
PubMed 

Google Scholar 
Işık D, Quaas E, Klinger D. Thermo- and oxidation-sensitive poly(meth)acrylates based on alkyl sulfoxides: dual-responsive homopolymers from one functional group. Polym Chem. 2020;11:7662–76.Article 

Google Scholar 
Louzao I, Seco JM, Quiñoá E, Riguera R. Control of the helicity of poly(phenylacetylene)s: from the conformation of the pendant to the chirality of the backbone. Angew Chem Int Ed. 2010;49:1430–3.Article 

Google Scholar 
Li XF, Wang R, Chu Y, Zheng YJ, Zhang J, Wan XH. Helix-sense-selective radical polymerization of vinyl biphenyl monomers. Acta Polym Sin. 2017;10:1609–15.
Google Scholar 
Chen YH, Yang LW, Yang NF, Yan JY, Yang ZS. Helix-sense-selective radical polymerization of (S)-6-acryloyl-2,2′-bisalkoxy-1,1′-binaphthyl. Polym Bull. 2015;72:3183–90.Article 

Google Scholar 

Hot Topics

Related Articles