Dynamic structural twist in metal–organic frameworks enhances solar overall water splitting

Hisatomi, T. & Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019).Article 
CAS 

Google Scholar 
Liu, M. et al. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat. Energy 1, 16151 (2016).Article 
CAS 

Google Scholar 
Ran, J. et al. NiPS3 ultrathin nanosheets as versatile platform advancing highly active photocatalytic H2 production. Nat. Commun. 13, 4600 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, X. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10, 1180–1189 (2018).Article 
CAS 
PubMed 

Google Scholar 
Kosco, J. et al. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nat. Energy 7, 340–351 (2022).Article 
CAS 

Google Scholar 
Wang, Z., Li, C. & Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 48, 2109–2125 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, Q., Pornrungroj, C., Linley, S. & Reisner, E. Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 7, 13–24 (2022).Article 

Google Scholar 
Zou, Z., Ye, J., Sayama, K. & Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001).Article 
CAS 
PubMed 

Google Scholar 
Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).Article 
CAS 
PubMed 

Google Scholar 
Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).Article 
CAS 
PubMed 

Google Scholar 
Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 598, 304–307 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhou, P. et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613, 66–70 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhang, G., Lan, Z.-A., Lin, L., Lin, S. & Wang, X. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7, 3062–3066 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Song, X. et al. Overall photocatalytic water splitting by an organolead iodide crystalline material. Nat. Catal. 3, 1027–1033 (2020).Article 
CAS 

Google Scholar 
Larom, S., Salama, F., Schuster, G. & Adir, N. Engineering of an alternative electron transfer path in photosystem II. Proc. Natl Acad. Sci. USA 107, 9650–9655 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dods, R. et al. Ultrafast structural changes within a photosynthetic reaction centre. Nature 589, 310–314 (2021).Article 
CAS 
PubMed 

Google Scholar 
Grabowski, Z. R., Rotkiewicz, K. & Rettig, W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 103, 3899–4032 (2003).Article 
PubMed 

Google Scholar 
Wang, Y. et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 4, 746–760 (2019).Article 
CAS 

Google Scholar 
Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).Article 
PubMed 

Google Scholar 
Li, G., Zhao, S., Zhang, Y. & Tang, Z. Metal–organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives. Adv. Mater. 30, 1800702 (2018).Article 

Google Scholar 
Hu, H. et al. Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358–366 (2021).Article 
CAS 
PubMed 

Google Scholar 
Stanley, P. M., Haimerl, J., Shustova, N. B., Fischer, R. A. & Warnan, J. Merging molecular catalysts and metal–organic frameworks for photocatalytic fuel production. Nat. Chem. 14, 1342–1356 (2022).Article 
CAS 
PubMed 

Google Scholar 
Navalón, S., Dhakshinamoorthy, A., Álvaro, M., Ferrer, B. & García, H. Metal–organic frameworks as photocatalysts for solar-driven overall water splitting. Chem. Rev. 123, 445–490 (2023).Article 
PubMed 

Google Scholar 
Nguyen, H. L. Metal–organic frameworks for photocatalytic water splitting. Sol. RRL 5, 2100198 (2021).Article 
CAS 

Google Scholar 
Nguyen, H. L. Metal–organic frameworks can photocatalytically split water—why not? Adv. Mater. 34, 2200465 (2022).Article 
CAS 

Google Scholar 
Jiao, L., Wang, J. & Jiang, H.-L. Microenvironment modulation in metal–organic framework-based catalysis. Acc. Mater. Res. 2, 327–339 (2021).Article 
CAS 

Google Scholar 
Schmieder, P. et al. CFA-1: the first chiral metal–organic framework containing Kuratowski-type secondary building units. Dalton Trans. 42, 10786–10797 (2013).Article 
CAS 
PubMed 

Google Scholar 
Braslavsky, S. E. et al. Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Pure Appl. Chem. 83, 931–1014 (2011).Article 
CAS 

Google Scholar 
Lachmanová, Š. et al. Kinetics of multielectron transfers and redox-induced structural changes in N-aryl-expanded pyridiniums: establishing their unusual, versatile electrophoric activity. J. Am. Chem. Soc. 137, 11349–11364 (2015).Article 
PubMed 

Google Scholar 
Damrauer, N. H. et al. Effects of intraligand electron delocalization, steric tuning, and excited-state vibronic coupling on the photophysics of aryl-substituted bipyridyl complexes of Ru(II). J. Am. Chem. Soc. 119, 8253–8268 (1997).Article 
CAS 

Google Scholar 
Wang, H. et al. High quantum efficiency of hydrogen production from methanol aqueous solution with PtCu–TiO2 photocatalysts. Nat. Mater. 22, 619–626 (2023).Article 
CAS 
PubMed 

Google Scholar 
Fu, C. et al. Spontaneous bulk-surface charge separation of TiO2-{001} nanocrystals leads to high activity in photocatalytic methane combustion. ACS Catal. 12, 6457–6463 (2022).Article 
CAS 

Google Scholar 
An, Y. et al. NiII coordination to an Al-based metal-organic framework made from 2-aminoterephthalate for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 56, 3036–3040 (2017).Article 
CAS 

Google Scholar 
Zhang, J. et al. Metal–organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting. Adv. Mater. 32, 2004747 (2020).Article 
CAS 

Google Scholar 
Salcedo-Abraira, P. et al. A novel porous Ti-squarate as efficient photocatalyst in the overall water splitting reaction under simulated sunlight irradiation. Adv. Mater. 33, 2106627 (2021).Article 
CAS 

Google Scholar 
Nyakuchena, J. et al. Direct evidence of photoinduced charge transport mechanism in 2D conductive metal organic frameworks. J. Am. Chem. Soc. 142, 21050–21058 (2020).Article 
CAS 
PubMed 

Google Scholar 
Shi, M. et al. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting. Angew. Chem. Int. Ed. 59, 6590–6595 (2020).Article 
CAS 

Google Scholar 
Liu, Y. et al. Phase-enabled metal–organic framework homojunction for highly selective CO2 photoreduction. Nat. Commun. 12, 1231 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bottaro, S. & Lindorff-Larsen, K. Biophysical experiments and biomolecular simulations: a perfect match? Science 361, 355–360 (2018).Article 
CAS 
PubMed 

Google Scholar 
Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).Article 
CAS 
PubMed 

Google Scholar 
Santaclara, J. G. et al. Organic linker defines the excited-state decay of photocatalytic MIL-125(Ti)-type materials. ChemSusChem 9, 388–395 (2016).Article 
CAS 
PubMed 

Google Scholar 
Rachuri, Y., Parmar, B., Bisht, K. K. & Suresh, E. Mixed ligand two dimensional Cd(II)/Ni(II) metal organic frameworks containing dicarboxylate and tripodal N-donor ligands: Cd(II) MOF is an efficient luminescent sensor for detection of picric acid in aqueous media. Dalton Trans. 45, 7881–7892 (2016).Article 
CAS 
PubMed 

Google Scholar 
Huang, G.-Q. et al. Mixed-linker isoreticular Zn(II) metal–organic frameworks as Brønsted acid–base bifunctional catalysts for Knoevenagel condensation reactions. Inorg. Chem. 61, 8339–8348 (2022).Article 
CAS 
PubMed 

Google Scholar 
Bien, C. E. et al. Bioinspired metal–organic framework for trace CO2 capture. J. Am. Chem. Soc. 140, 12662–12666 (2018).Article 
CAS 
PubMed 

Google Scholar 
Ketchie, W., Murayama, M. & Davis, R. Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top. Catal. 44, 307 (2007).Article 
CAS 

Google Scholar 
Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).Article 
PubMed 

Google Scholar 
VandeVondele, J. et al. QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).Article 
CAS 

Google Scholar 
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. J. Phys. Rev. 140, A1133–A1138 (1965).Article 

Google Scholar 
VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).Article 
PubMed 

Google Scholar 
Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).Article 
CAS 

Google Scholar 
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).Article 
CAS 

Google Scholar 
Blochl, P. E., Jepsen, O. & Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 50, 17953–17979 (1994).CAS 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 
CAS 
PubMed 

Google Scholar 
Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).Article 

Google Scholar 
Chu, W. et al. Ultrafast dynamics of photongenerated holes at a CH3OH/TiO2 rutile interface. J. Am. Chem. Soc. 138, 13740–13749 (2016).Article 
CAS 
PubMed 

Google Scholar 
Craig, C. F., Duncan, W. R. & Prezhdo, O. V. Trajectory surface hopping in the time-dependent Kohn–Sham approach for electron-nuclear dynamics. Phys. Rev. Lett. 95, 163001 (2005).Article 
PubMed 

Google Scholar 
Akimov, A. V. & Prezhdo, O. V. The PYXAID program for non-adiabatic molecular dynamics in condensed matter systems. J. Chem. Theory and Comput. 9, 4959–4972 (2013).Article 
CAS 

Google Scholar 
Akimov, A. V. & Prezhdo, O. V. Advanced capabilities of the PYXAID program: integration schemes, decoherence effects, multiexcitonic states, and field–matter interaction. J. Chem. Theory Comput. 10, 789–804 (2014).Article 
CAS 
PubMed 

Google Scholar 
Nose, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984).Article 
CAS 

Google Scholar 
Barducci, A., Bussi, G. & Parrinello, M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020603 (2008).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles