The role of biomolecular condensates in protein aggregation

Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nat. Med. 10, S10–S17 (2004).Article 
PubMed 

Google Scholar 
Willbold, D., Strodel, B., Schröder, G. F., Hoyer, W. & Heise, H. Amyloid-type protein aggregation and prion-like properties of amyloids. Chem. Rev. 121, 8285–8307 (2021).Article 
CAS 
PubMed 

Google Scholar 
Dobson, C. M. The amyloid phenomenon and its links with human disease. Cold Spring Harb. Perspect. Biol. 9, a023648 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Emin, D. et al. Small soluble α-synuclein aggregates are the toxic species in Parkinson’s disease. Nat. Commun. 13, 5512 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cascella, R. et al. Probing the origin of the toxicity of oligomeric aggregates of α-synuclein with antibodies. ACS Chem. Biol. 14, 1352–1362 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meisl, G. et al. Uncovering the universality of self-replication in protein aggregation and its link to disease. Sci. Adv. 8, 6831 (2022).Article 

Google Scholar 
Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).Article 
CAS 
PubMed 

Google Scholar 
Alberti, S. & Hyman, A. A. Are aberrant phase transitions a driver of cellular aging? BioEssays 38, 959–968 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vazquez, D. S., Toledo, P. L., Gianotti, A. R. & Ermácora, M. R. Protein conformation and biomolecular condensates. Curr. Res. Struct. Biol. 4, 285–307 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nakashima, K. K., Vibhute, M. A. & Spruijt, E. Biomolecular chemistry in liquid phase separated compartments. Front. Mol. Biosci. 6, 21 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bhattacharya, A. et al. Lipid sponge droplets as programmable synthetic organelles. Proc. Natl Acad. Sci. USA 117, 18206–18215 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
de Jong, B. Coacervation. Proc. R. Acad. Amst. 32, 849–856 (1929).
Google Scholar 
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Peeples, W. & Rosen, M. K. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat. Chem. Biol. 17, 693–702 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Y., Narlikar, G. J. & Kutateladze, T. G. Enzymatic reactions inside biological condensates. J. Mol. Biol. 433, 166624 (2021).Article 
CAS 
PubMed 

Google Scholar 
Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nedelsky, N. B. & Taylor, J. P. Pathological phase transitions in ALS-FTD impair dynamic RNA–protein granules. RNA 28, 97–113 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dewey, C. M. et al. TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res. 1462, 16–25 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Törnquist, M. et al. Secondary nucleation in amyloid formation. Chem. Commun. 54, 8667–8684 (2018).Article 

Google Scholar 
Michaels, T. C. T. et al. Chemical kinetics for bridging molecular mechanisms and macroscopic measurements of amyloid fibril formation. Annu. Rev. Phys. Chem. 69, 273–298 (2018).Article 
CAS 
PubMed 

Google Scholar 
Sinnige, T. et al. Kinetic analysis reveals that independent nucleation events determine the progression of polyglutamine aggregation in C. elegans. Proc. Natl Acad. Sci. USA 118, e2021888118 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ignatova, Z. & Gierasch, L. M. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc. Natl Acad. Sci. USA 101, 523–528 (2004).Article 
CAS 
PubMed 

Google Scholar 
Lipiński, W. P. et al. Biomolecular condensates can both accelerate and suppress aggregation of α-synuclein. Sci. Adv. 8, eabq6495 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Knowles, T. P. J., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014).Article 
CAS 
PubMed 

Google Scholar 
Farzadfard, A. et al. Thermodynamic characterization of amyloid polymorphism by microfluidic transient incomplete separation. Chem. Sci. 15, 2528–2544 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Weber, C., Michaels, T. & Mahadevan, L. Spatial control of irreversible protein aggregation. eLife 8, 42315 (2019).Article 

Google Scholar 
Khurana, R. et al. Mechanism of thioflavin T binding to amyloid fibrils. J. Struct. Biol. 151, 229–238 (2005).Article 
CAS 
PubMed 

Google Scholar 
Wetzel, R. Amyloids, prions & other aggregates. Methods Enzymol. 309, 3–820 (1999).
Google Scholar 
Hellstrand, E., Boland, B., Walsh, D. M. & Linse, S. Amyloid β-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem. Neurosci. 1, 13–18 (2010).Article 
CAS 
PubMed 

Google Scholar 
Zurlo, E. et al. In situ kinetic measurements of α-synuclein aggregation reveal large population of short-lived oligomers. PLoS ONE 16, e0245548 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fakhree, M. A. A., Nolten, I. S., Blum, C. & Claessens, M. M. A. E. Different conformational subensembles of the intrinsically disordered protein α-synuclein in cells. J. Phys. Chem. Lett. 9, 1249–1253 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Veldhuis, G., Segers-Nolten, I., Ferlemann, E. & Subramaniam, V. Single-molecule FRET reveals structural heterogeneity of SDS-bound α-synuclein. ChemBioChem 10, 436–439 (2009).Article 
CAS 
PubMed 

Google Scholar 
Iljina, M. et al. Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms. Sci. Rep. 6, 28658 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tittelmeier, J., Druffel-Augustin, S., Alik, A., Melki, R. & Nussbaum-Krammer, C. Dissecting aggregation and seeding dynamics of α-Syn polymorphs using the phasor approach to FLIM. Commun. Biol. 5, 1345 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Ray, S. et al. Mass photometric detection and quantification of nanoscale α-synuclein phase separation. Nat. Chem. 15, 1306–1316 (2023).Article 
CAS 
PubMed 

Google Scholar 
Murakami, T. et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678–690 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lin, Y., Protter, D. S. W., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mathieu, C., Pappu, R. V. & Taylor, J. P. Beyond aggregation: pathological phase transitions in neurodegenerative disease. Science 370, 55–60 (2020).Article 

Google Scholar 
Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).Article 
CAS 
PubMed 

Google Scholar 
Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Conicella, A. E., Zerze, G. H., Mittal, J. & Fawzi, N. L. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537–1549 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kang, H. et al. PARIS undergoes liquid–liquid phase separation and poly(ADP‐ribose)‐mediated solidification. EMBO Rep. 24, e56166 (2023).Article 
CAS 
PubMed 

Google Scholar 
Gruijs da Silva, L. A. et al. Disease‐linked TDP‐43 hyperphosphorylation suppresses TDP‐43 condensation and aggregation. EMBO J. 41, e108443 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tomaszewski, A. et al. Solid-to-liquid phase transition in the dissolution of cytosolic misfolded-protein aggregates. iScience 26, 108334 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Linsenmeier, M. et al. The interface of condensates of the hnRNPA1 low-complexity domain promotes formation of amyloid fibrils. Nat. Chem. 15, 1340–1349 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wegmann, S. et al. Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J. 37, e98049 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Boyko, S. et al. Liquid-liquid phase separation of tau protein: the crucial role of electrostatic interactions. J. Biol. Chem. 294, 11054–11059 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wen, J. et al. Conformational expansion of tau in condensates promotes irreversible aggregation. J. Am. Chem. Soc. 143, 13056–13064 (2021).Article 
CAS 
PubMed 

Google Scholar 
Boyko, S., Surewicz, K. & Surewicz, W. K. Regulatory mechanisms of tau protein fibrillation under the conditions of liquid–liquid phase separation. Proc. Natl Acad. Sci. USA 117, 31882–31890 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ray, S. et al. Synuclein aggregation nucleates through liquid–liquid phase separation. Nat. Chem. 12, 705–716 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ray, S. et al. Spatiotemporal solidification of α-synuclein inside the liquid droplets. Preprint at https://doi.org/10.1101/2021.10.20.465113 (2021).Sawner, A. S. et al. Modulating α-synuclein liquid-liquid phase separation. Biochem 60, 3676–3696 (2021).Article 
CAS 

Google Scholar 
Hardenberg, M. C. et al. Observation of an α-synuclein liquid droplet state and its maturation into Lewy body-like assemblies. J. Mol. Cell Biol. 13, 282–294 (2021).CAS 
PubMed 
PubMed Central 

Google Scholar 
Küffner, A. M. et al. Sequestration within biomolecular condensates inhibits Aβ-42 amyloid formation. Chem. Sci. 12, 4373–4382 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Choi, C. H., Lee, D. S. W., Sanders, D. W. & Brangwynne, C. P. Condensate interfaces can accelerate protein aggregation. Biophys. J. 123, 1404–1413 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Shen, Y. et al. Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nat. Nanotechnol. 15, 841–847 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Riback, J. A. et al. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209–214 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Onuchic, P. L., Milin, A. N., Alshareedah, I., Deniz, A. A. & Banerjee, P. R. Divalent cations can control a switch-like behavior in heterotypic and homotypic RNA coacervates. Sci. Rep. 9, 12161 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
McCall, P. M. et al. Partitioning and enhanced self-assembly of actin in polypeptide coacervates. Biophys. J. 114, 1636–1645 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Samanta, N. et al. Sequestration of proteins in stress granules relies on the in-cell but not the in vitro folding stability. J. Am. Chem. Soc. 143, 19909–19918 (2021).Article 
CAS 
PubMed 

Google Scholar 
Frottin, F. et al. The nucleolus functions as a phase-separated protein quality control compartment. Science 365, 342–347 (2019).Article 
CAS 
PubMed 

Google Scholar 
Bauermann, J., Laha, S., McCall, P. M., Jülicher, F. & Weber, C. A. Chemical kinetics and mass action in coexisting phases. J. Am. Chem. Soc. 144, 19294–19304 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Michaels, T. C. T., Mahadevan, L. & Weber, C. A. Enhanced potency of aggregation inhibitors mediated by liquid condensates. Phys. Rev. Res. 4, 043173 (2022).Article 
CAS 

Google Scholar 
Stender, E. G. P. et al. Capillary flow experiments for thermodynamic and kinetic characterization of protein liquid-liquid phase separation. Nat. Commun. 12, 7289 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Taylor, N. O., Wei, M. T., Stone, H. A. & Brangwynne, C. P. Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys. J. 117, 1285–1300 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yewdall, N. A., André, A. A. M., Lu, T. & Spruijt, E. Coacervates as models of membraneless organelles. Curr. Opin. Colloid Interface Sci. 52, 101416 (2021).Article 
CAS 

Google Scholar 
Pönisch, W., Michaels, T. C. T. & Weber, C. A. Aggregation controlled by condensate rheology. Biophys. J. 122, 197–214 (2023).Article 
PubMed 

Google Scholar 
Ahmad, B., Chen, Y. & Lapidus, L. J. Aggregation of α-synuclein is kinetically controlled by intramolecular diffusion. Proc. Natl Acad. Sci. USA 109, 2336–2341 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wei, M. T. et al. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat. Chem. 9, 1118–1125 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, H., Kelley, F. M., Milovanovic, D., Schuster, B. S. & Shi, Z. Surface tension and viscosity of protein condensates quantified by micropipette aspiration. Biophys. Rep. 1, 100011 (2021).CAS 

Google Scholar 
Li, J., Uversky, V. N. & Fink, A. L. Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human α-synuclein. Biochem 40, 11604–11613 (2001).Article 
CAS 

Google Scholar 
Murthy, A. C. et al. Molecular interactions underlying liquid–liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26, 637–648 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Smisdom, N. et al. Fluorescence recovery after photobleaching on the confocal laser-scanning microscope: generalized model without restriction on the size of the photobleached disk. J. Biomed. Opt. 16, 046021 (2011).Article 
PubMed 

Google Scholar 
Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jawerth, L. M. et al. Salt-dependent rheology and surface tension of protein condensates using optical traps. Phys. Rev. Lett. 121, 258101 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zhou, H. X. Determination of condensate material properties from droplet deformation. J. Phys. Chem. B 124, 8372–8379 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kalwarczyk, T. et al. Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model. Adv. Colloid Interface Sci. 223, 55–63 (2015).Article 
CAS 
PubMed 

Google Scholar 
Bubak, G. et al. Quantifying nanoscale viscosity and structures of living cells nucleus from mobility measurements. J. Phys. Chem. Lett. 12, 294–301 (2021).Article 
CAS 
PubMed 

Google Scholar 
Munishkina, L. A., Cooper, E. M., Uversky, V. N. & Fink, A. L. The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J. Mol. Recognit. 17, 456–464 (2004).Article 
CAS 
PubMed 

Google Scholar 
Vagenende, V., Yap, M. G. S. & Trout, B. L. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochem 48, 11084–11096 (2009).Article 
CAS 

Google Scholar 
Roussel, M. R. Foundations of Chemical Kinetics (IOP Publishing, 2023).Abyzov, A., Blackledge, M. & Zweckstetter, M. Conformational dynamics of intrinsically disordered proteins regulate biomolecular condensate chemistry. Chem. Rev. 122, 6719–6748 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).Garaizar, A. et al. Aging can transform single-component protein condensates into multiphase architectures. Proc. Natl Acad. Sci. USA 119, e2119800119 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Breydo, L. et al. The crowd you’re in with: effects of different types of crowding agents on protein aggregation. Biochim. Biophys. Acta Proteins Proteom. 1844, 346–357 (2014).Article 
CAS 

Google Scholar 
Schreck, J. S., Bridstrup, J. & Yuan, J. M. Investigating the effects of molecular crowding on the kinetics of protein aggregation. J. Phys. Chem. B 124, 9829–9839 (2020).Article 
CAS 
PubMed 

Google Scholar 
Grigolato, F. & Arosio, P. The role of surfaces on amyloid formation. Biophys. Chem. 270, 106533 (2021).Article 
CAS 
PubMed 

Google Scholar 
Galvagnion, C. et al. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol. 11, 229–234 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marie, G. et al. Acceleration of α-synuclein aggregation by exosomes. J. Biol. Chem. 290, 2969–2982 (2015).Article 

Google Scholar 
Morinaga, A. et al. Critical role of interfaces and agitation on the nucleation of Aβ amyloid fibrils at low concentrations of Aβ monomers. Biochim. Biophys. Acta Proteins Proteom. 1804, 986–995 (2010).Article 
CAS 

Google Scholar 
Gray, J. J. The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol. 14, 110–115 (2004).Article 
CAS 
PubMed 

Google Scholar 
Zapadka, K. L., Becher, F. J., Gomes dos Santos, A. L. & Jackson, S. E. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 7, 20170030 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Camino, J. D., Gracia, P. & Cremades, N. The role of water in the primary nucleation of protein amyloid aggregation. Biophys. Chem. 269, 106520 (2021).Article 
CAS 
PubMed 

Google Scholar 
Folkmann, A. W., Putnam, A., Lee, C. F. & Seydoux, G. Regulation of biomolecular condensates by interfacial protein clusters. Science 373, 1218–1224 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Garcia-Jove Navarro, M. et al. RNA is a critical element for the sizing and the composition of phase-separated RNA–protein condensates. Nat. Commun. 10, 3230 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Welsh, T. J. et al. Surface electrostatics govern the emulsion stability of biomolecular condensates. Nano Lett. 22, 612–621 (2022).Article 
CAS 
PubMed 

Google Scholar 
Vabulas, R. M., Raychaudhuri, S., Hayer-Hartl, M. & Hartl, F. U. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb. Perspect. Biol. 2, a004390 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chirita, C. N., Congdon, E. E., Yin, H. & Kuret, J. Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry 44, 5862–5872 (2005).Article 
CAS 
PubMed 

Google Scholar 
Menon, S. & Mondal, J. Conformational plasticity in α-synuclein and how crowded environment modulates it. J. Phys. Chem. B 127, 4032–4049 (2023).Article 
CAS 
PubMed 

Google Scholar 
Farag, M. et al. Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations. Nat. Commun. 13, 7722 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ohgita, T. et al. Intramolecular interaction kinetically regulates fibril formation by human and mouse α-synuclein. Sci. Rep. 13, 10885 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kumari, P. et al. Structural insights into α-synuclein monomer–fibril interactions. Proc. Natl Acad. Sci. USA 118, e2012171118 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guseva, S. et al. Liquid-liquid phase separation modifies the dynamic properties of intrinsically disordered proteins. J. Am. Chem. Soc. 145, 10548–10563 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, M. et al. Partitioning of small molecules in hydrogen-bonding complex coacervates of poly(acrylic acid) and poly(ethylene glycol) or pluronic block copolymer. Macromolecules 50, 3818–3830 (2017).Article 
CAS 

Google Scholar 
Huang, S. et al. Effect of small molecules on the phase behavior and coacervation of aqueous solutions of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrene sulfonate). J. Colloid Interface Sci. 518, 216–224 (2018).Article 
CAS 
PubMed 

Google Scholar 
Lipiński, W. P. et al. Fibrils e merging from droplets: molecular guiding principles behind phase transitions of a short peptide-based condensate studied by solid-state NMR. Chem. Eur. J. 29, e202301159 (2023).Article 
PubMed 

Google Scholar 
Leblanc, S. J., Kulkarni, P. & Weninger, K. R. Single molecule FRET: a powerful tool to study intrinsically disordered proteins. Biomolecules 8, 140 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Holmstrom, E. D. et al. Accurate transfer efficiencies, distance distributions, and ensembles of unfolded and intrinsically disordered proteins from single-molecule FRET. Methods Enzymol. 611, 287–325 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bordignon, E. & Polyhach, Y. EPR techniques to probe insertion and conformation of spin-labeled proteins in lipid bilayers. Meth. Mol. Biol. 974, 329–355 (2013).Article 
CAS 

Google Scholar 
Maltseva, D. et al. Fibril formation and ordering of disordered FUS LC driven by hydrophobic interactions. Nat. Chem. 15, 1146–1154 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dyson, H. J. & Wright, P. E. Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv. Protein Chem. 62, 311–340 (2002).Article 
CAS 
PubMed 

Google Scholar 
Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol. 14, 630–642 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hatters, D. M., Lindner, R. A., Carver, J. A. & Howlett, G. J. The molecular chaperone, α-crystallin, inhibits amyloid formation by apolipoprotein C-II. J. Biol. Chem. 276, 33755–33761 (2001).Article 
CAS 
PubMed 

Google Scholar 
Webster, J. M., Darling, A. L., Uversky, V. N. & Blair, L. J. Small heat shock proteins, big impact on protein aggregation in neurodegenerative disease. Front. Pharmacol. 10, 1047 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bruinsma, I. B. et al. Inhibition of α-synuclein aggregation by small heat shock proteins. Proteins 79, 2956–2967 (2011).Article 
CAS 
PubMed 

Google Scholar 
Wentink, A. S. et al. Molecular dissection of amyloid disaggregation by human HSP70. Nature 587, 483–488 (2020).Article 
CAS 
PubMed 

Google Scholar 
Li, Y. et al. Hsp70 exhibits a liquid-liquid phase separation ability and chaperones condensed FUS against amyloid aggregation. iScience 25, 104356 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shammas, S. L. et al. Binding of the molecular chaperone αb-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys. J. 101, 1681–1689 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shorter, J. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS ONE 6, e26319 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Daturpalli, S., Waudby, C. A., Meehan, S. & Jackson, S. E. Hsp90 inhibits α-synuclein aggregation by interacting with soluble oligomers. J. Mol. Biol. 425, 4614–4628 (2013).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Z. Y. et al. TRIM11 protects against tauopathies and is down-regulated in Alzheimer’s disease. Science 381, eadd6696 (2023).Article 
CAS 
PubMed 

Google Scholar 
Liu, Z. et al. Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation. Nat. Struct. Mol. Biol. 27, 363–372 (2020).Article 
CAS 
PubMed 

Google Scholar 
Gu, J. et al. Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles. Proc. Natl Acad. Sci. USA 117, 31123–31133 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hiller, S. Chaperone-bound clients: the importance of being dynamic. Trends Biochem. Sci. 44, 517–527 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zbinden, A., Pérez-Berlanga, M., De Rossi, P. & Polymenidou, M. Phase separation and neurodegenerative diseases: a disturbance in the force. Dev. Cell 55, 45–68 (2020).Article 
CAS 
PubMed 

Google Scholar 
Mateju, D. et al. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J. 36, 1669–1687 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles