Iridium nitrenoid-enabled arene C−H functionalization

Abrams, D. J., Provencher, P. A. & Sorensen, E. J. Recent applications of C–H functionalization in complex natural product synthesis. Chem. Soc. Rev. 47, 8925–8967 (2018).Article 
CAS 
PubMed 

Google Scholar 
Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhang, L. & Ritter, T. A perspective on late-stage aromatic C–H bond functionalization. J. Am. Chem. Soc. 144, 2399–2414 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brückl, T., Baxter, R. D., Ishihara, Y. & Baran, P. S. Innate and guided C–H functionalization logic. Acc. Chem. Res. 45, 826–839 (2012).Article 
PubMed 

Google Scholar 
Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Holmberg-Douglas, N. & Nicewicz, D. A. Photoredox-catalyzed C–H functionalization reactions. Chem. Rev. 122, 1925–2016 (2022).Article 
CAS 
PubMed 

Google Scholar 
Fan, Z. et al. Molecular editing of aza-arene C–H bonds by distance, geometry and chirality. Nature 610, 87–93 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meng, G. et al. Achieving site-selectivity for C–H activation processes based on distance and geometry: a carpenter’s approach. J. Am. Chem. Soc. 142, 10571–10591 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barranco, S., Zhang, J., López-Resano, S., Casnati, A. & Pérez-Temprano, M. H. Transition metal-catalysed directed C–H functionalization with nucleophiles. Nat. Synth. 1, 841–853 (2022).Article 

Google Scholar 
Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).Article 
CAS 
PubMed 

Google Scholar 
Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ramadoss, B., Jin, Y., Asako, S. & Ilies, L. Remote steric control for undirected meta-selective C–H activation of arenes. Science 375, 658–663 (2022).Article 
CAS 
PubMed 

Google Scholar 
Nagib, D. A. & MacMillan, D. W. C. Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. Nature 480, 224–228 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yamamoto, K. et al. Palladium-catalysed electrophilic aromatic C–H fluorination. Nature 554, 511–514 (2018).Article 
CAS 
PubMed 

Google Scholar 
Berger, F. et al. Site-selective and versatile aromatic C−H functionalization by thianthrenation. Nature 567, 223–228 (2019).Article 
CAS 
PubMed 

Google Scholar 
Lv, J. et al. Metal-free directed sp2-C–H borylation. Nature 575, 336–340 (2019).Article 
CAS 
PubMed 

Google Scholar 
Fujiwara, Y. et al. Practical and innate carbon–hydrogen functionalization of heterocycles. Nature 492, 95–99 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bunnett, J. F. & Zahler, R. E. Aromatic nucleophilic substitution reactions. Chem. Rev. 49, 273–412 (1951).Article 
CAS 

Google Scholar 
Rossi, R. A., Pierini, A. B. & Peñéñory, A. B. Nucleophilic substitution reactions by electron transfer. Chem. Rev. 103, 71–168 (2003).Article 
CAS 
PubMed 

Google Scholar 
Ma̧kosza, M. & Wojciechowski, K. Application of vicarious nucleophilic substitution in organic synthesis. Liebigs Ann. Recl. 1997, 1805–1816 (1997).Article 

Google Scholar 
Wilson, A. S. S., Hill, M. S., Mahon, M. F., Dinoi, C. & Maron, L. Organocalcium-mediated nucleophilic alkylation of benzene. Science 358, 1168–1171 (2017).Article 
CAS 
PubMed 

Google Scholar 
Fier, P. S. & Hartwig, J. F. Selective C–H fluorination of pyridines and diazines inspired by a classic amination reaction. Science 342, 956–960 (2013).Article 
CAS 
PubMed 

Google Scholar 
Hilton, M. C., Dolewski, R. D. & McNally, A. Selective functionalization of pyridines via heterocyclic phosphonium salts. J. Am. Chem. Soc. 138, 13806–13809 (2016).Article 
CAS 
PubMed 

Google Scholar 
Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C–H amination via photoredox catalysis. Science 349, 1326–1330 (2015).Article 
CAS 
PubMed 

Google Scholar 
Ju, M. & Schomaker, J. M. Nitrene transfer catalysts for enantioselective C–N bond formation. Nat. Rev. Chem. 5, 580–594 (2021).Article 
CAS 
PubMed 

Google Scholar 
Dequirez, G., Pons, V. & Dauban, P. Nitrene chemistry in organic synthesis: still in its infancy? Angew. Chem. Int. Ed. 51, 7384–7395 (2012).Article 
CAS 

Google Scholar 
Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).Article 
CAS 
PubMed 

Google Scholar 
Ye, C. X., Shen, X., Chen, S. & Meggers, E. Stereocontrolled 1,3-nitrogen migration to access chiral α-amino acids. Nat. Chem. 14, 566–573 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jin, L.-M., Xu, P., Xie, J. & Zhang, X. P. Enantioselective intermolecular radical C–H amination. J. Am. Chem. Soc. 142, 20828–20836 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hong, S. Y. et al. Selective formation of γ-lactams via C–H amidation enabled by tailored iridium catalysts. Science 359, 1016–1021 (2018).Article 
CAS 
PubMed 

Google Scholar 
Hong, S. Y., Hwang, Y., Lee, M. & Chang, S. Mechanism-guided development of transition metal-catalyzed C–N bond-forming reactions using dioxazolones as the versatile amidating source. Acc. Chem. Res. 54, 2683–2700 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wang, H. et al. Nitrene-mediated intermolecular N–N coupling for efficient synthesis of hydrazides. Nat. Chem. 13, 378–385 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kurup, S. S. & Groysman, S. Catalytic synthesis of azoarenes via metal-mediated nitrene coupling. Dalton Trans. 51, 4577–4589 (2022).Article 
CAS 
PubMed 

Google Scholar 
Intrieri, D., Zardi, P., Caselli, A. & Gallo, E. Organic azides: “energetic reagents” for the intermolecular amination of C–H bonds. Chem. Commun. 50, 11440–11453 (2014).Article 
CAS 

Google Scholar 
Shin, K., Kim, H. & Chang, S. Transition metal-catalyzed C–N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C–H amination. Acc. Chem. Res. 48, 1040–1052 (2015).Article 
CAS 
PubMed 

Google Scholar 
Chen, Z., Kacmaz, A. & Xiao, J. Recent development in the synthesis and catalytic application of iridacycles. Chem. Rec. 21, 1506–1534 (2021).Article 
CAS 
PubMed 

Google Scholar 
Knox, A. J. S. et al. Integration of ligand and structure-based virtual screening for the identification of the first dual targeting agent for heat shock protein 90 (Hsp90) and tubulin. J. Med. Chem. 52, 2177–2180 (2009).Article 
CAS 
PubMed 

Google Scholar 
Bringmann, G. et al. Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005).Article 
CAS 

Google Scholar 
Yue, Q., Liu, B., Liao, G. & Shi, B.-F. Binaphthyl scaffold: a class of versatile structure in asymmetric C–H functionalization. ACS Catal. 12, 9359–9396 (2022).Article 
CAS 

Google Scholar 
Loxq, P., Manoury, E., Poli, R., Deydier, E. & Labande, A. Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals. Coord. Chem. Rev. 308, 131–190 (2016).Article 
CAS 

Google Scholar 
Yang, Y., Lan, J. & You, J. Oxidative C–H/C–H coupling reactions between two (hetero)arenes. Chem. Rev. 117, 8787–8863 (2017).Article 
CAS 
PubMed 

Google Scholar 
Cheng, J. K., Xiang, S.-H., Li, S., Ye, L. & Tan B. Recent advances in catalytic asymmetric construction of atropisomers. Chem. Rev. 121, 4805–4902 (2021).Zhao, X.-J. et al. Enantioselective synthesis of 3,3′-disubstituted 2-amino-2′-hydroxy-1,1′-binaphthyls by copper-catalyzed aerobic oxidative cross-coupling. Angew. Chem. Int. Ed. 60, 7061–7065 (2021).Article 
CAS 

Google Scholar 
Dyadyuk, A. et al. A chiral iron disulfonate catalyst for the enantioselective synthesis of 2-amino-2′-hydroxy-1,1′-binaphthyls (NOBINs). J. Am. Chem. Soc. 144, 3676–3684 (2022).Article 
CAS 
PubMed 

Google Scholar 
Qi, L.-W., Li, S., Xiang, S.-H., Wang, J. & Tan, B. Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy. Nat. Catal. 2, 314–323 (2019).Article 
CAS 

Google Scholar 
Mas-Roselló, J., Smejkal, T. & Cramer, N. Iridium-catalyzed acid-assisted asymmetric hydrogenation of oximes to hydroxylamines. Science 368, 1098–1102 (2020).Article 
PubMed 

Google Scholar 
Park, Y. & Chang, S. Asymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalysts. Nat. Catal. 2, 219–227 (2019).Article 
CAS 

Google Scholar 
Wang, H. et al. Iridium-catalyzed enantioselective C(sp3)–H amidation controlled by attractive noncovalent interactions. J. Am. Chem. Soc. 141, 7194–7201 (2019).Article 
CAS 
PubMed 

Google Scholar 
Boutadla, Y., Davies, D. L., Jones, R. C. & Singh, K. The scope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium, rhodium and ruthenium. Chem. Eur. J. 17, 3438–3448 (2011).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles