IrCytoToxDB: a dataset of iridium(III) complexes cytotoxicities against various cell lines

Zysman-Colman, E. Iridium (III) in optoelectronic and photonics applications (John Wiley & Sons, 2017).Jayabharathi, J., Thanikachalam, V. & Thilagavathy, S. Phosphorescent organic light-emitting devices: Iridium based emitter materials – an overview. Coord. Chem. Rev 483, 215100, https://doi.org/10.1016/j.ccr.2023.215100 (2023).Article 
CAS 

Google Scholar 
Wu, C. et al. Blue iridium (iii) phosphorescent oleds with high brightness over 10 000 cd m -2 and ultralow efficiency roll-off. Adv. Opt. Mater. 11, 2201998, https://doi.org/10.1002/adom.202201998 (2022).Article 
CAS 

Google Scholar 
Tong, K. N. et al. Cascading energy transfer for highly efficient deep-red oled emission with cyclometalated [3+2+1] iridium complexes. Small https://doi.org/10.1002/smll.202307500 (2023).Kimura, Y., Ueoka, F., Uraguchi, D. & Ooi, T. Urea as a redox-active directing group under asymmetric photocatalysis of iridium-chiral borate ion pairs. J. Am. Chem. Soc. 142, 19462–19467, https://doi.org/10.1021/jacs.0c09468 (2020).Article 
CAS 
PubMed 

Google Scholar 
Carson, M. C., Liu, C. R. & Kozlowski, M. C. Synthesis of phenol-pyridinium salts enabled by tandem electron donor-acceptor complexation and iridium photocatalysis. J. Org. Chem. 89, 3419–3429, https://doi.org/10.1021/acs.joc.3c02872 (2024).Article 
CAS 
PubMed 

Google Scholar 
Kreijger, S. D. et al. Red absorbing cyclometalated ir(iii) diimine photosensitizers competent for hydrogen photocatalysis. Inorg. Chem. 61, 5245–5254, https://doi.org/10.1021/acs.inorgchem.1c03727 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y. et al. Construction of robust iridium(iii) complex-based photosensitizer for boosting hydrogen evolution. Inorg. Chem. 62, 7212–7219, https://doi.org/10.1021/acs.inorgchem.2c04471 (2023).Article 
CAS 
PubMed 

Google Scholar 
Bobo, M. V. et al. Bis-cyclometalated iridium complexes containing 4,4′-bis(phosphonomethyl)-2,2′-bipyridine ligands: Photophysics, electrochemistry, and high-voltage dye-sensitized solar cells. Inorg. Chem. 59, 6351–6358, https://doi.org/10.1021/acs.inorgchem.0c00456 (2020).Article 
CAS 
PubMed 

Google Scholar 
Tatarin, S. V., Meshcheriakova, E. A., Kozyukhin, S. A., Emets, V. V. & Bezzubov, S. I. Rational design of efficient photosensitizers based on cyclometalated iridium(iii) complexes with 2-arylbenzimidazole and aromatic 1,3-diketone ligands. Dalton Transactions 52, 16261–16275, https://doi.org/10.1039/D3DT02789A (2023).Article 
CAS 
PubMed 

Google Scholar 
Ho, P. C., Ho, C. H. & Yeung Wong, W. Recent advances of iridium(iii) metallophosphors for health-related applications. Coord. Chem. Rev. 413, 213267, https://doi.org/10.1016/j.ccr.2020.213267 (2020).Article 
CAS 

Google Scholar 
Shi, H., Lin, S., Lou, J., Zhang, Q.-L. & Wang, Y. Recent development and application of cyclometalated iridium(iii) complexes as chemical and biological probes. Dalton Transactions 50, 6410–6417, https://doi.org/10.1039/D1DT00592H (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhou, J., Li, J., Zhang, K. Y.-J., Liu, S. & Hu, X. Phosphorescent iridium(iii) complexes as lifetime-based biological sensors for photoluminescence lifetime imaging microscopy. Coord. Chem. Rev. 453, 214334, https://doi.org/10.1016/j.ccr.2021.214334156 (2022).Article 
CAS 

Google Scholar 
Liu, S. et al. A multifunctional phosphorescent iridium(iii) complex for specific nucleus staining and hypoxia monitoring. Chem. Commun. 51, 7943–7946, https://doi.org/10.1039/C5CC01978H (2015).Article 
ADS 
CAS 

Google Scholar 
Dash, S. et al. ‘aggregation induced emission’ active iridium(iii) complexes with applications in mitochondrial staining. RSC Adv. 7, 5642–5648, https://doi.org/10.1039/c6ra24792j (2017).Article 
ADS 
CAS 

Google Scholar 
Solomatina, A. I., Kozina, D. O., Porsev, V. V. & Tunik, S. P. ph-responsive n^ c-cyclometalated iridium (iii) complexes: Synthesis, photophysical properties, computational results, and bioimaging application. Molecules 27, 232, https://doi.org/10.3390/molecules27010232 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yip, A. M. H., Lai, C. K. H., Yiu, K. S. M. & Lo, K. K.-W. Phosphorogenic iridium(iii) bis -tetrazine complexes for bioorthogonal peptide stapling, bioimaging, photocytotoxic applications, and the construction of nanosized hydrogels. Angewandte Chemie – Int. Ed. 61, https://doi.org/10.1002/anie.202116078 (2022).Xu, Z.-H. et al. Ultrasensitive nucleic acid assay based on cyclometalated iridium(iii) complex with high electrochemilu1minescence efficiency. Anal. Chem. 93, 1686–1692, https://doi.org/10.1021/acs.analchem.0c04284 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhu, R. et al. Dual-emissive iridium(iii) complexes as phosphorescent probes with orthogonal responses to analyte binding and oxygen quenching. Angewandte Chemie – Int. Ed. 62, https://doi.org/10.1002/anie.202309178 (2023).Qin, W.-W., Pan, Z. Y., Cai, D. H., Li, Y. & He, L. Cyclometalated iridium(iii) complexes for mitochondria-targeted combined chemo-photodynamic therapy. Dalton Transactions 49, 3562–3569, https://doi.org/10.1039/d0dt00180e (2020).Article 
CAS 
PubMed 

Google Scholar 
Liao, X. et al. Ferriiridium: A lysosome-targeting iron(iii)-activated iridium(iii) prodrug for chemotherapy in gastric cancer cells. Angewandte Chemie – Int. Ed. 59, 3315–3321, https://doi.org/10.1002/anie.201915828 (2020).Article 
CAS 

Google Scholar 
Wei, F. et al. Photodecaging of a mitochondria-localized iridium(iii) endoperoxide complex for two-photon photoactivated therapy under hypoxia. J. Am. Chem. Soc. 144, 4091–4101, https://doi.org/10.1021/jacs.1c13137 (2022).Article 
CAS 
PubMed 

Google Scholar 
Rodríguez-Fanjul, V., Pizarro, A., Carrasco, A. L. & Habtemariam, A. Structurally strained half-sandwich iridium(iii) complexes as highly potent anticancer agents. J. Medicinal Chem. 63, 4005–4021, https://doi.org/10.1021/acs.jmedchem.9b02000 (2020).Article 
CAS 

Google Scholar 
Ma, W. et al. Potential anticancer agent for selective damage to mitochondria or lysosomes: Naphthalimide-modified fluorescent biomarker half-sandwich iridium (iii) and ruthenium (ii) complexes. Eur. J. Medicinal Chem. 181, 111599, https://doi.org/10.1016/j.ejmech.2019.111599 (2019).Article 
CAS 

Google Scholar 
Galindo, A. et al. Towards novel photodynamic anticancer agents generating superoxide anion radicals: A cyclometalated ir iii complex conjugated to a far-red emitting coumarin. Angewandte Chemie – Int. Ed. 58, 6311–6315, https://doi.org/10.1002/anie.201901268 (2019).Article 
CAS 

Google Scholar 
Ren, G. et al. Predicting the cytotoxicity of chemicals using ensemble learning methods and molecular fingerprints. J. Appl. Toxicol. 39, 1366–1377, https://doi.org/10.1002/jat.3785 (2019).Article 
CAS 
PubMed 

Google Scholar 
Tabaaza, G. A., Otoo, B. N. T., Zaini, D. B., Otchere, D. A. & Lal, B. Application of machine learning models to predict cytotoxicity of ionic liquids using volsurf principal properties. Comput. Toxicol. 26, 100266, https://doi.org/10.1016/j.comtox.2023.100266188 (2023).Article 
CAS 

Google Scholar 
Sun, H., Wang, Y.-H., Cheff, D. M., Hall, M. & Shen, M. Predictive models for estimating cytotoxicity on the basis of chemical structures. Bioorganic Medicinal Chem. 28, 115422, https://doi.org/10.1016/j.bmc.2020.115422 (2020).Article 
CAS 

Google Scholar 
Sikder, R., Zhang, H., Gao, P. & Tao, Y. Machine learning framework for predicting cytotoxicity and identifying toxicity drivers of disinfection byproducts. J. Hazard. Mater. 469, 133989, https://doi.org/10.1016/j.jhazmat.2024.133989 (2024).Article 
CAS 
PubMed 

Google Scholar 
Orsi, M., Loh, B. S., Weng, C., Ang, W. H. & Frei, A. Using machine learning to predict the antibacterial activity of ruthenium complexes. Angewandte Chemie – Int. Ed. https://doi.org/10.1002/anie.202317901 (2024).Weininger, D. Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules. J. Chem. Inf. Model. 28, 31–36, https://doi.org/10.1021/ci00057a005 (1988).Article 
CAS 

Google Scholar 
Ananikov, V. P. & Egorova, K. S. Toxicity of metal compounds: Knowledge and myths. Organometallics 36, 4071–4090, https://doi.org/10.1021/acs.organomet.7b00605 (2017).Article 
CAS 

Google Scholar 
Krasnov, L., Tatarin, S., Smirnov, D. & Bezzubov, S. IrCytoToxDB: a dataset of iridium(III) complexes cytotoxicities against various cell lines. Zenodo https://doi.org/10.5281/zenodo.13120939 (2024).Joung, J. F., Han, M., Jeong, M. & Park, S. Experimental database of optical properties of organic compounds. Sci. Data 7, https://doi.org/10.1038/s41597-020-00634-8 (2020).

Hot Topics

Related Articles