On the origin of low-valent uranium oxidation state

Boronski, J. T. et al. A crystalline tri-thorium cluster with σ-aromatic metal–metal bonding. Nature 598, 72–75 (2021).Article 
ADS 
PubMed 

Google Scholar 
MacDonald, M. R. et al. Identification of the +2 oxidation state for uranium in a crystalline molecular complex, [K(2.2.2-Cryptand)][(C 5 H 4 SiMe 3) 3 U]. J. Am. Chem. Soc. 135, 13310–13313 (2013).Article 
PubMed 

Google Scholar 
La Pierre, H. S., Kameo, H., Halter, D. P., Heinemann, F. W. & Meyer, K. Coordination and redox isomerization in the reduction of a uranium(III) monoarene complex. Angew. Chem. Int. Ed. 53, 7154–7157 (2014).Article 

Google Scholar 
Wooles, A. J. et al. Uranium(III)-carbon multiple bonding supported by arene δ-bonding in mixed-valence hexauranium nanometre-scale rings. Nat. Commun. 9, 2097 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Barluzzi, L., Giblin, S. R., Mansikkamäki, A. & Layfield, R. A. Identification of oxidation state +1 in a molecular uranium complex. J. Am. Chem. Soc. 144, 18229–18233 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Dutkiewicz, M. S. et al. Organometallic neptunium(III) complexes. Nat. Chem. 8, 797–802 (2016).Article 
PubMed 

Google Scholar 
Kvashnina, K. O. et al. A novel metastable pentavalent plutonium solid phase on the pathway from aqueous plutonium(VI) to PuO2 nanoparticles. Angew. Chem. Int. Ed. 58, 17558–17562 (2019).Article 

Google Scholar 
Cary, S. K. et al. Incipient class II mixed valency in a plutonium solid-state compound. Nat. Chem. 9, 856–861 (2017).Article 
PubMed 

Google Scholar 
Gaiser, A. N. et al. Creation of an unexpected plane of enhanced covalency in cerium(III) and berkelium(III) terpyridyl complexes. Nat. Commun. 12, 7230 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Polinski, M. J. et al. Unusual structure, bonding and properties in a californium borate. Nat. Chem. 6, 387–392 (2014).Article 
PubMed 

Google Scholar 
Carter, K. P. et al. Structural and spectroscopic characterization of an einsteinium complex. Nature 590, 85–88 (2021).Article 
ADS 
PubMed 

Google Scholar 
Avens, L. R. et al. A convenient entry into trivalent actinide chemistry: synthesis and characterization of AnI3(THF)4 and An[N(SiMe3)2]3 (An = U, Np, Pu). Inorg. Chem. 33, 2248–2256 (1994).Article 

Google Scholar 
Keener, M. et al. Multielectron redox chemistry of uranium by accessing the +II oxidation state and enabling reduction to a U(I) synthon. J. Am. Chem. Soc. 145, 16271–16283 (2023).Article 
PubMed 

Google Scholar 
Boreen, M. A. et al. A uranium tri-rhenium triple inverse. Sandwich Compound. J. Am. Chem. Soc. 141, 5144–5148 (2019).Article 
PubMed 

Google Scholar 
Kvashnina, K. O., Butorin, S. M., Martin, P. & Glatzel, P. Chemical state of complex uranium oxides. Phys. Rev. Lett. 111, 253002 (2013).Article 
ADS 
PubMed 

Google Scholar 
Kvashnina, K. O., Kvashnin, Y. O. & Butorin, S. M. Role of resonant inelastic X-ray scattering in high-resolution core-level spectroscopy of actinide materials. J. Electron. Spectrosc. Relat. Phenom. 194, 27–36 (2014).Article 
ADS 

Google Scholar 
Leinders, G., Bes, R., Pakarinen, J., Kvashnina, K. & Verwerft, M. Evolution of the uranium chemical state in mixed-valence oxides. Inorg. Chem. 56, 6784–6787 (2017).Article 
PubMed 

Google Scholar 
Kvashnina, K. O. & Butorin, S. M. High-energy resolution X-ray spectroscopy at actinide M 4,5 and ligand K edges: what we know, what we want to know, and what we can know. Chem. Commun. 58, 327–342 (2022).Article 

Google Scholar 
Caciuffo, R. & Lander, G. H. X-ray synchrotron radiation studies of actinide materials. J. Synchrotron Radiat. 28, 1692–1708 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Kvashnina, K. O. & Scheinost, A. C. A Johann-type X-ray emission spectrometer at the Rossendorf beamline. J. Synchrotron Radiat. 23, 836–841 (2016).Article 
PubMed 

Google Scholar 
Vitova, T. et al. Polarization dependent high energy resolution X-ray absorption study of dicesium uranyl tetrachloride. Inorg. Chem. 54, 174–182 (2015).Article 
PubMed 

Google Scholar 
Bès, R. et al. Use of HERFD–XANES at the U L 3—and M 4—edges to determine the uranium valence state on [Ni(H 2 O) 4] 3 [U(OH,H 2 O)(UO 2) 8 O 12 (OH) 3]. Inorg. Chem. 55, 4260–4270 (2016).Article 
PubMed 

Google Scholar 
Hunault, M. O. J. Y. et al. Speciation change of uranyl in lithium borate glasses. Inorg. Chem. 58, 6858–6865 (2019).Article 
PubMed 

Google Scholar 
Gerber, E. et al. To form or not to form: PuO2 nanoparticles at acidic pH. Environ. Sci. Nano 9, 1509–1518 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Minasian, S. G. et al. Determining relative f and d orbital contributions to M–Cl covalency in MCl 6 2– (M = Ti, Zr, Hf, U) and UOCl 5—using Cl K-edge X-ray absorption spectroscopy and time-dependent density functional theory. J. Am. Chem. Soc. 134, 5586–5597 (2012).Article 
PubMed 

Google Scholar 
Su, J. et al. Energy-degeneracy-driven covalency in actinide bonding. J. Am. Chem. Soc. 140, 17977–17984 (2018).Article 
PubMed 

Google Scholar 
Sergentu, D.-C. & Autschbach, J. Covalency in actinide(IV) hexachlorides in relation to the chlorine K-edge X-ray absorption structure. Chem. Sci. 13, 3194–3207 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Thibaut, E., Boutique, J. P., Verbist, J. J., Levet, J. C. & Noel, H. Electronic structure of uranium halides and oxyhalides in the solid state. An X-ray photoelectron spectral study of bonding ionicity. J. Am. Chem. Soc. 104, 5266–5273 (1982).Article 

Google Scholar 
Ilton, E. S. & Bagus, P. S. XPS determination of uranium oxidation states. Surf. Interface Anal. 43, 1549–1560 (2011).Article 

Google Scholar 
Neidig, M. L., Clark, D. L. & Martin, R. L. Covalency in f-element complexes. Coord. Chem. Rev. 257, 394–406 (2013).Article 

Google Scholar 
Beekmeyer, R. & Kerridge, A. Assessing covalency in cerium and uranium hexachlorides: a correlated wavefunction and density functional theory study. Inorganics 3, 482–499 (2015).Article 

Google Scholar 
Gianopoulos, C. G. et al. Bonding in uranium(V) hexafluoride based on the experimental electron density distribution measured at 20 K. Inorg. Chem. 56, 1775–1778 (2017).Article 
PubMed 

Google Scholar 
Tanti, J., Lincoln, M. & Kerridge, A. Decomposition of d- and f-shell contributions to uranium bonding from the quantum theory of atoms in molecules: application to uranium and uranyl halides. Inorganics 6, 88 (2018).Gibson, J. K. Bond dissociation energies reveal the participation of d electrons in f-element halide bonding. J. Phys. Chem. A 126, 272–285 (2022).Article 
PubMed 

Google Scholar 
Butorin, S. M. et al. Chemical reduction of actinides probed by resonant inelastic X-ray scattering. Anal. Chem. 85, 11196–11200 (2013).Article 
PubMed 

Google Scholar 
Booth, C. H. et al. Delocalization and occupancy effects of 5f orbitals in plutonium intermetallics using L3-edge resonant X-ray emission spectroscopy. J. Electron Spectrosc. Relat. Phenom. 194, 57–65 (2014).Article 
ADS 

Google Scholar 
Kvashnina, K. O. et al. Sensitivity to actinide doping of uranium compounds by resonant inelastic X-ray scattering at uranium L 3 edge. Anal. Chem. 87, 8772–8780 (2015).Article 
PubMed 

Google Scholar 
Butorin, S. M., Modin, A., Vegelius, J. R., Kvashnina, K. O. & Shuh, D. K. Probing chemical bonding in uranium dioxide by means of high-resolution X-ray absorption spectroscopy. J. Phys. Chem. C 120, 29397–29404 (2016).Article 

Google Scholar 
Ramanantoanina, H., Kuri, G., Daul, C. & Bertsch, J. Core electron excitations in U4+: modelling of the: N d105f2 → n d95f3 transitions with n = 3, 4 and 5 by ligand field tools and density functional theory. Phys. Chem. Chem. Phys. 18, 19020–19031 (2016).Article 
PubMed 

Google Scholar 
Booth, C. H. et al. Probing 5f-state configurations in URu2Si2 with U L III -edge resonant X-ray emission spectroscopy. Phys. Rev. B 94, 045121 (2016).Article 
ADS 
MathSciNet 

Google Scholar 
Kvashnina, K. O., Walker, H. C., Magnani, N., Lander, G. H. & Caciuffo, R. Resonant X-ray spectroscopy of uranium intermetallics at the M 4, 5 edges of uranium. Phys. Rev. B 95, 245103 (2017).Article 
ADS 

Google Scholar 
Amidani, L. et al. Understanding the size effects on the electronic structure of ThO2 nanoparticles. Phys. Chem. Chem. Phys. 21, 10635–10643 (2019).Article 
PubMed 

Google Scholar 
Butorin, S. M. 3d-4f resonant inelastic X-ray scattering of actinide dioxides: crystal-field multiplet description. Inorg. Chem. 59, 16251–16264 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Amidani, L. et al. Probing the local coordination of hexavalent uranium and the splitting of 5f orbitals induced by chemical bonding. Inorg. Chem. 60, 16286–16293 (2021).Article 
PubMed 

Google Scholar 
Bagus, P. S., Schacherl, B. & Vitova, T. Computational and spectroscopic tools for the detection of bond covalency in Pu(IV) materials. Inorg. Chem. 60, 16090–16102 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Polly, R., Schacherl, B., Rothe, J. & Vitova, T. Relativistic multiconfigurational Ab initio calculation of uranyl 3d4f resonant inelastic X-ray scattering. Inorg. Chem. 60, 18764–18776 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Lander, G. H. et al. Resonant inelastic X-ray spectroscopy on UO 2 as a test case for actinide materials. J. Phys. Condens. Matter 33, 06LT01 (2021).Article 
PubMed 

Google Scholar 
Butorin, S. M. Advanced X-ray spectroscopy of actinide trichlorides. J. Chem. Phys. 155, 164103 (2021).Article 
ADS 
PubMed 

Google Scholar 
Sergentu, D.-C. & Autschbach, J. X-ray absorption spectra of f-element complexes: insight from relativistic multiconfigurational wavefunction theory. Dalton Trans. 51, 1754–1764 (2022).Article 
PubMed 

Google Scholar 
Marino, A. et al. Singlet magnetism in intermetallic UGa 2 unveiled by inelastic X-ray scattering. Phys. Rev. B 108, 045142 (2023).Article 
ADS 

Google Scholar 
Ehrman, J. N. et al. Unveiling hidden shake-up features in the uranyl M4-edge spectrum. JACS Au 4, 1134–1141 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Stanistreet-Welsh, K. & Kerridge, A. Bounding [AnO 2] 2+ (An = U, Np) covalency by simulated O K-edge and An M-edge X-ray absorption near-edge spectroscopy. Phys. Chem. Chem. Phys. 25, 23753–23760 (2023).Article 
PubMed 

Google Scholar 
de Groot, F. & Kotani, A. Core Level Spectroscopy of Solids. (CRC Press, Boca Raton, 2008).Haverkort, M. W., Zwierzycki, M. & Andersen, O. K. Multiplet ligand-field theory using Wannier orbitals. Phys. Rev. B Condens. Matter Mater. Phys. 85, 165113 (2012).Koepernik, K. & Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 59, 1743–1757 (1999).Article 
ADS 

Google Scholar 
Bader, R. F. W. Atoms in Molecules: A Quantum Theory. 22 (Clarendon Press, 1994).Kerridge, A. Quantification of f-element covalency through analysis of the electron density: insights from simulation. Chem. Commun. 53, 6685–6695 (2017).Article 

Google Scholar 
Scheinost, A. C. et al. ROBL-II at ESRF: a synchrotron toolbox for actinide research. J. Synchrotron Radiat. 28, 333–349 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Retegan, M. Crispy: v0.7.4. https://doi.org/10.5281/zenodo.1008184%7D (2019).Otero-de-la-Roza, A., Johnson, E. R. & Luaña, V. Critic2: A program for real-space analysis of quantum chemical interactions in solids. Comput. Phys. Commun. 185, 1007–1018 (2014).Article 
ADS 

Google Scholar 
Neese, F. Software update: the ORCA program system—version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022).Article 

Google Scholar 
Scheibe, B. et al. UF4 and the high-pressure polymorph HP-UF4. Chem. Eur. J. 25, 7366–7374 (2019).Article 
ADS 
PubMed 

Google Scholar 
Rudel, S. S. & Kraus, F. Facile syntheses of pure uranium halides: UCl 4, UBr 4 and UI 4. Dalton Trans. 46, 5835–5842 (2017).Article 
PubMed 

Google Scholar 
Rudel, S. S., Deubner, H. L., Scheibe, B., Conrad, M. & Kraus, F. Facile syntheses of pure uranium(III) halides: UF3, UCl3, UBr3, and UI3. Z. Für Anorg. Allg. Chem. 644, 323–329 (2018).Article 

Google Scholar 
Larson, A. C., Roof, R. B. & Cromer, D. T. The crystal structure of UF4. Acta Crystallogr. 17, 555–UF558 (1964).Article 

Google Scholar 
Taylor, J. C. & Wilson, P. W. Crystal structure of uranium tetrabromide by X-ray and neutron diffraction. Acta Crystallogr. Sect. B 30, 2664–2667 (1974).Article 
ADS 

Google Scholar 
Levy, J. H., Taylor, J. C. & Waugh, A. B. Crystal structure of uranium(IV) tetraiodide by X-ray and neutron diffraction. Inorg. Chem. 19, 672–674 (1980).Article 

Google Scholar 
Schleid, T., Meyer, G. & Morss, L. R. Facile synthesis of UCl4 and ThCl4, metallothermic reductions of UCl4 with alkali metals and crystal structure refinements of UCl3, UCl4 and Cs2UCl6. J. Less Common Met. 132, 69–77 (1987).Article 

Google Scholar 
Levy, J. H., Taylor, J. C. & Wilson, P. W. The structure of uranium tribromide by neutron diffraction profile analysis. J. Less Common Met. 39, 265–270 (1975).Article 

Google Scholar 
Murasik, A., Fischer, P. & Szczepaniak, W. Neutron diffraction study of long-range antiferromagnetic order and crystal structure of uranium (III) tri-iodide. J. Phys. C Solid State Phys. 14, 1847 (1981).Article 
ADS 

Google Scholar 

Hot Topics

Related Articles