Non-invasive detection of hazardous materials with a thermal-to-epithermal neutron station: a feasibility study towards practical application

Bełdowski, J., Brenner, M. & Lehtonen, K. K. Contaminated by war: A brief history of sea-dumping of munitions. Mar. Environ. Res. 162, 105189. https://doi.org/10.1016/j.marenvres.2020.105189 (2020).Article 
CAS 
PubMed 

Google Scholar 
Vanninen, P. et al. Exposure status of sea-dumped chemical warfare agents in the Baltic sea. Mar. Environ. Res. 161, 105112. https://doi.org/10.1016/j.marenvres.2020.105112 (2020).Article 
CAS 
PubMed 

Google Scholar 
Chemical residues in the Baltic sea based on petitions 1328/2019 and 0406/2020 under rule 227(2). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021IP0123. Accessed 05 Feb 2024.Silarski, M. et al. Monte Carlo simulations of the underwater detection of illicit war remnants with neutron-based sensors. Eur. Phys. J. Plus 138, 751. https://doi.org/10.1140/epjp/s13360-023-04377-4 (2023).Article 
CAS 

Google Scholar 
Sharma, S. K. et al. Underwater time-gated standoff Raman sensor for in situ chemical sensing. Appl. Spectrosc. 75, 739–746. https://doi.org/10.1177/00037028211001923 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Mlcak, R. et al. Mems-based gravimetric sensors for explosives detection. In 2010 IEEE International conference on technologies for homeland security (HST), 321–324, https://doi.org/10.1109/THS.2010.5655033 (2010).Brito-da Costa, A. M. et al. Ground penetrating radar for buried explosive devices detection: A case studies review. Aust. J. Forensic Sci. 54, 559–578. https://doi.org/10.1080/00450618.2020.1865453 (2022).Article 

Google Scholar 
Silarski, M. & Nowakowski, M. Performance of the SABAT neutron-based explosives detector integrated with an unmanned ground vehicle: A simulation study. Sensors 22, 9996. https://doi.org/10.3390/s22249996 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
European consortium EURITRACK. http://www.euritrack.org/. Accessed 05 Feb 2024.SODERN company website. http://www.sodern.com/. Accessed 05 Feb 2024.Kaźmierczak, Ł et al. A simple approach to data analysis for the detection of hazardous materials by means of neutron activation analysis. Acta Phys. Polon. A127, 1540–1542. https://doi.org/10.12693/APhysPolA.127.1540 (2015).Article 
ADS 
CAS 

Google Scholar 
Obhođas̆, J., Sudac, D., Meric, I., et al. In-situ measurements of rare earth elements in deep sea sediments using nuclear methods. Sci. Rep. 8, 4925–7. https://doi.org/10.1038/s41598-018-23148-1 (2018).Silarski, M., Hunik, D., Moskal, P., Smolis, M. & Tadeja, S. Design of the SABAT system for underwater detection of dangerous substances. Acta Phys. Polon. B 47, 497–502. https://doi.org/10.5506/APhysPolB.47.497 (2016).Article 
ADS 

Google Scholar 
Sibczyński, P. et al. Monte Carlo n-particle simulations of an underwater chemical threats detection system using neutron activation analysis. J. Instrum. 14, P09001-14. https://doi.org/10.1088/1748-0221/14/09/P09001 (2019).Article 

Google Scholar 
Valkovic, V. (ed.) 14 MeV Neutrons: Physics and Applications 1st edn. (CRC Press, 2015).
Google Scholar 
Lehnert, A., Flaska, M. & Kearfott, K. D-d neutron-scatter measurements for a novel explosives-detection technique. Nucl. Instrum. Methods Phys. Res. Sect. A 693, 195–202. https://doi.org/10.1016/j.nima.2012.07.047 (2012).Article 
ADS 
CAS 

Google Scholar 
Pesente, S. et al. Effects of soil moisture on the detection of buried explosives by radiative neutron capture. Nucl. Instrum. Methods Phys. Res. Sect. A 459, 577–580. https://doi.org/10.1016/S0168-9002(00)01058-5 (2001).Article 
ADS 
CAS 

Google Scholar 
Chen, T.-H., Hsu, H.-Y. & Wu, S.-P. The detection of multiple illicit street drugs in liquid samples by direct analysis in real time (dart) coupled to q-orbitrap tandem mass spectrometry. Forensic Sci. Int. 267, 1–6. https://doi.org/10.1016/j.forsciint.2016.07.025 (2016).Article 
CAS 
PubMed 

Google Scholar 
Lanzarotta, A. Analysis of forensic casework utilizing infrared spectroscopic imaging. Sensors 16, 278–12. https://doi.org/10.3390/s16030278 (2016).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Imran, M. et al. Electrochemical detection of nitrazepam using leaf-like graphitic carbon nitride nanosheets. Phys. Scr. 98, 075003. https://doi.org/10.1088/1402-4896/acd7b0 (2023).Article 
ADS 

Google Scholar 
Yang, Y., Yang, J. & Li, Y. Fusion of x-ray imaging and photoneutron induced gamma analysis for contrabands detection. IEEE Trans. Nucl. Sci. 60, 1134–1139. https://doi.org/10.1109/TNS.2013.2248095 (2013).Article 
ADS 
CAS 

Google Scholar 
Andreani, C., Colognesi, D., Mayers, J., Reiter, G. F. & Senesi, R. Measurement of momentum distribution of light atoms and molecules in condensed matter systems using inelastic neutron scattering. Adv. Phys. 54, 377–469. https://doi.org/10.1080/00018730500403136 (2005).Article 
ADS 
CAS 

Google Scholar 
Andreani, C., Krzystyniak, M., Romanelli, G., Senesi, R. & Fernandez-Alonso, F. Electron-volt neutron spectroscopy: Beyond fundamental systems. Adv. Phys. 66, 1–73. https://doi.org/10.1080/00018732.2017.1317963 (2017).Article 
ADS 

Google Scholar 
Romanelli, G. et al. Thermal neutron cross sections of amino acids from average contributions of functional groups. J. Phys. Condens. Matter. 33, 285901. https://doi.org/10.1088/1361-648X/abfc13 (2021).Article 
CAS 

Google Scholar 
Witek, M. et al. Glass transition in rice pasta as observed by combined neutron scattering and time-domain NMR. Polymers 13, 2426. https://doi.org/10.3390/polym13152426 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Andreani, C., Senesi, R., Krzystyniak, M., Romanelli, G. & Fernandez-Alonso, F. Chapter 7 – atomic quantum dynamics in materials research. In Neutron Scattering—Applications in Biology, Chemistry, and Materials Science Vol. 49 (eds Fernandez-Alonso, F. & Price, D. L.) 403–457 (Academic Press, 2017). https://doi.org/10.1016/B978-0-12-805324-9.00007-8.Chapter 

Google Scholar 
Krzystyniak, M., Romanelli, G. & Fernandez-Alonso, F. Non-destructive quantitation of hydrogen via mass-resolved neutron spectroscopy. Analyst 144, 3936–3941. https://doi.org/10.1039/C8AN01729H (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Elizondo-Decanini, J. M. Neutristor 2012-r &d 100 award report (Tech. Rep, Sandia National Laboratories, 2012).Yogo, A. et al. Advances in laser-driven neutron sources and applications. Eur. Phys. J. Ahttps://doi.org/10.1140/epja/s10050-023-01083-8 (2023).Article 

Google Scholar 
Ma, H. et al. Crystal structures of \(C_{3}N_{6}H_{6}\) under high pressure. Chem. Phys. Lett. 368, 668–672. https://doi.org/10.1016/s0009-2614(02)01965-6 (2003).Article 
ADS 
CAS 

Google Scholar 
Shelton, H., Dera, P. & Tkachev, S. Evolution of interatomic and intermolecular interactions and polymorphism of melamine at high pressure. Curr. Comput. Aided Drug Des. 8, 265. https://doi.org/10.3390/cryst8070265 (2018).Article 
CAS 

Google Scholar 
Hejny, C. & Minkov, V. S. High-pressure crystallography of periodic and aperiodic crystals. IUCrJ 2, 218–229. https://doi.org/10.1107/s2052252514025482 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fortes, A. D., Funnell, N. P. & Bull, C. L. Thermoelastic properties of deuterated melamine, \(C_{3}N_{6}D_{6}\), between 4.2-320 K at 5 kPa and between 0.1-5.0 GPa at 295 K from neutron powder diffraction and DFT calculations. High Pres. Res. 39, 160–178. https://doi.org/10.1080/08957959.2019.1578879 (2019).Article 
ADS 
CAS 

Google Scholar 
Bowden, P. R., Leonard, P. W., Lichthardt, J. P., Tappan, B. C. & Ramos, K. J. Energetic salt of trinitrophloroglucinol and melamine. In AIP Conference Proceedings(Author(s) https://doi.org/10.1063/1.4971508 (2017).Hughes, E. W. The crystal structure of melamine. J. Am. Chem. Soc. 63, 1737–1752. https://doi.org/10.1021/ja01851a069 (1941).Article 
CAS 

Google Scholar 
Larson, A. C. & Cromer, D. T. Crystal structure refinements with generalized scattering factors. II. melamine, 2, 4, 6-triamino-s-triazine. J. Chem. Phys. 60, 185–192. https://doi.org/10.1063/1.1680766 (1974).Article 
ADS 
CAS 

Google Scholar 
Cromer, D. T., Larson, A. C. & Stewart, R. F. Crystal structure refinements with generalized scattering factors. III. refinement of 1, 1’-azobiscarbamide and melamine, 2, 4, 6-triamino-s- triazine, at the octopole level. J. Chem. Phys. 65, 336–349. https://doi.org/10.1063/1.432773 (1976).Article 
ADS 
CAS 

Google Scholar 
Akimoto, Y. Studies on the molecular structures of some cyanuric compounds by electron diffraction. Bull. Chem. Soc. Jpn. 28, 1–5. https://doi.org/10.1246/bcsj.28.1 (1955).Article 
CAS 

Google Scholar 
Varghese, J. N., O’Connell, A. M. & Maslen, E. N. The x-ray and neutron crystal structure of 2, 4, 6-triamino-1, 3, 5-triazine (melamine). Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 33, 2102–2108. https://doi.org/10.1107/s0567740877007821 (1977).Article 
ADS 

Google Scholar 
Cousson, A., Nicolaï, B. & Fillaux, F. Melamine (1,3,5-triazine-2,4,6-triamine): A neutron diffraction study at 14K. Acta Crystallogr. Sect. E 61, o222–o224. https://doi.org/10.1107/S160053680403332X (2005).Article 
CAS 

Google Scholar 
Stephenson, C. C. & Berets, D. J. The heat capacities and entropies of melamine and dicyandiamide. J. Am. Chem. Soc. 74, 882–883. https://doi.org/10.1021/ja01124a006 (1952).Article 
CAS 

Google Scholar 
Peng, L., Wei, X., Shan-Zhou, H., Xi, L. & Zhi-Cheng, T. Enthalpy of formation, heat capacity and entropy of melamine. Acta Phys. Chim. Sin. 25, 2417–2421. https://doi.org/10.3866/pku.whxb20091120 (2009).Article 

Google Scholar 
Vosegaard, E. S. et al. Synchrotron x-ray electron density analysis of chemical bonding in the graphitic carbon nitride precursor melamine. Chem. A Eur. J. 28, 5307–5321. https://doi.org/10.1002/chem.202201295 (2022).Article 
CAS 

Google Scholar 
Grabska, J., Beć, K. B., Kirchler, C. G., Ozaki, Y. & Huck, C. W. Distinct difference in sensitivity of NIR vs. IR bands of melamine to inter-molecular interactions with impact on analytical spectroscopy explained by anharmonic quantum mechanical study. Molecules 24, 1402. https://doi.org/10.3390/molecules24071402 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868. https://doi.org/10.1103/physrevlett.77.3865 (1996).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799. https://doi.org/10.1002/jcc.20495 (2006).Article 
CAS 
PubMed 

Google Scholar 
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104–19. https://doi.org/10.1063/1.3382344 (2010).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465. https://doi.org/10.1002/jcc.21759 (2011).Article 
CAS 
PubMed 

Google Scholar 
Johnson, E. R. & Becke, A. D. A post-Hartree-Fock model of intermolecular interactions. J. Chem. Phys. 123, 174104–9. https://doi.org/10.1063/1.1949201 (2005).Article 
ADS 
CAS 

Google Scholar 
Caldeweyher, E. et al. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 150, 154122. https://doi.org/10.1063/1.5090222 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Caldeweyher, E., Mewes, J.-M., Ehlert, S. & Grimme, S. Extension and evaluation of the D4 London-dispersion model for periodic systems. Phys. Chem. Chem. Phys. 22, 8499–8512. https://doi.org/10.1039/d0cp00502a (2020).Article 
CAS 
PubMed 

Google Scholar 
Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).Article 
ADS 
PubMed 

Google Scholar 
Tkatchenko, A., DiStasio, R. A., Car, R. & Scheffler, M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 108, 236402. https://doi.org/10.1103/physrevlett.108.236402 (2012).Article 
ADS 
PubMed 

Google Scholar 
Ambrosetti, A., Reilly, A. M., DiStasio, R. A. & Tkatchenko, A. Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 140, 18A508. https://doi.org/10.1063/1.4865104 (2014).Article 
CAS 
PubMed 

Google Scholar 
Liu, G., Wei, S.-H. & Zhang, C. Verification of the accuracy and efficiency of dispersion-corrected density functional theory methods to describe the lattice structure and energy of energetic cocrystals. Cryst. Growth Des. 22, 5307–5321. https://doi.org/10.1021/acs.cgd.2c00419 (2022).Article 
CAS 

Google Scholar 
O’Connor, D., Bier, I., Hsieh, Y.-T. & Marom, N. Performance of dispersion-inclusive density functional theory methods for energetic materials. J. Chem. Theory Comput. 18, 4456–4471. https://doi.org/10.1021/acs.jctc.2c00350 (2022).Article 
CAS 
PubMed 

Google Scholar 
Arrigoni, M. & Madsen, G. K. Comparing the performance of LDA and GGA functionals in predicting the lattice thermal conductivity of III-V semiconductor materials in the zincblende structure: The cases of AlAs and BAs. Comput. Mater. Sci. 156, 354–360. https://doi.org/10.1016/j.commatsci.2018.10.005 (2019).Article 
CAS 

Google Scholar 
Park, J.-S. Comparison study of exchange-correlation functionals on prediction of ground states and structural properties. Curr. Appl. Phys. 22, 61–64. https://doi.org/10.1016/j.cap.2020.12.005 (2021).Article 
ADS 

Google Scholar 
Fernández-Liencres, M. et al. Measurement and ab initio modeling of the inelastic neutron scattering of solid melamine. Chem. Phys. 266, 1–17. https://doi.org/10.1016/s0301-0104(01)00326-3 (2001).Article 

Google Scholar 
ISIS INS database. www.isis.stfc.ac.uk/instruments/tosca/ins-database/. Accessed 05 Feb 2024.Cheng, Y. Q., Daemen, L. L., Kolesnikov, A. I. & Ramirez-Cuesta, A. J. Simulation of inelastic neutron scattering spectra using OCLIMAX. J. Chem. Theory Comput. 15, 1974–1982. https://doi.org/10.1021/acs.jctc.8b01250 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y., Pittman, C. U. & Saebo, S. Investigation of the structure and properties of ammeline, melamine, and 2, 4-diamino-1, 3, 5-triazine by ab initio calculations. J. Org. Chem. 58, 3085–3090. https://doi.org/10.1021/jo00063a030 (1993).Article 
CAS 

Google Scholar 
Pardo, L. C., Rovira-Esteva, M., Busch, S., Moulin, J. F. & Tamarit, J. L. Fitting in a complex \({\chi }^{2}\) landscape using an optimized hypersurface sampling. Phys. Rev. E 84, 046711–7. https://doi.org/10.1103/PhysRevE.84.046711 (2011).Article 
ADS 
CAS 

Google Scholar 
Sala, G. et al. Constraints on the mass and radius of the accreting neutron star in the rapid burster. Astrophys. J. 752, 158–7. https://doi.org/10.1088/0004-637X/752/2/158 (2012).Article 
ADS 

Google Scholar 
Martínez-García, J. C. et al. Disentangling the secondary relaxations in the orientationally disordered mixed crystals: Cycloheptanol + cyclooctanol two-component system. J. Phys. Chem. B. 114, 6099–6106. https://doi.org/10.1021/jp100270z (2010).Article 
CAS 
PubMed 

Google Scholar 
Rovira-Esteva, M. et al. Interplay between intramolecular and intermolecular structures of 1,1,2,2-tetrachloro-1,2-difluoroethane. Phys. Rev. B 84, 064202–12. https://doi.org/10.1103/PhysRevB.84.064202 (2011).Article 
ADS 
CAS 

Google Scholar 
Rovira-Esteva, M. et al. Microscopic structures and dynamics of high- and low-density liquid \(trans\)-1,2-dichloroethylene. Phys. Rev. B 81, 092202–4. https://doi.org/10.1103/PhysRevB.81.092202 (2010).Article 
ADS 
CAS 

Google Scholar 
Romanelli, G. & Krzystyniak, M. On the line-shape analysis of Compton profiles and its application to neutron scattering. Nucl. Instrum. Methods Phys. Res. Sect. A 819, 84–88. https://doi.org/10.1016/j.nima.2016.02.089 (2016).Article 
ADS 
CAS 

Google Scholar 
Lalik, E. et al. Interplay between local structure and nuclear dynamics in tungstic acid: A neutron scattering study. J. Phys. Chem. C 125, 23864–23879. https://doi.org/10.1021/acs.jpcc.1c05121 (2021).Article 
CAS 

Google Scholar 
Krzystyniak, M. et al. Nuclear dynamics and phase polymorphism in solid formic acid. Phys. Chem. Chem. Phys. 19, 9064–9074. https://doi.org/10.1039/c7cp00997f (2017).Article 
CAS 
PubMed 

Google Scholar 
Krzystyniak, M., Romanelli, G., Grabowska, B. & Fernandez-Alonso, F. Nanocomposite materials as observed by mass-selective neutron spectroscopy. J. Phys. Commun. 8, 022001 (2024).Article 

Google Scholar 
Lamaire, A., Wieme, J., Rogge, S. M. J., Waroquier, M. & Van Speybroeck, V. On the importance of anharmonicities and nuclear quantum effects in modelling the structural properties and thermal expansion of MOF-5. J. Chem. Phys. 150, 094503. https://doi.org/10.1063/1.5085649 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Krzystyniak, M. et al. Model selection in neutron Compton scattering—A Bayesian approach with physical constraints. J. Phys. Conf. Ser. 1055, 012012. https://doi.org/10.1088/1742-6596/1055/1/012012 (2018).Article 
CAS 

Google Scholar 
Parmentier, A. et al. Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice. Front. Phys. 13, 136101. https://doi.org/10.1007/s11467-017-0724-4 (2018).Article 
ADS 

Google Scholar 
Granada, J., Santisteban, J., Dawidowski, J. & Mayer, R. Neutron transmission: A powerful technique for small accelerator-based neutron sources. Physics Procedia26, 108–116, https://doi.org/10.1016/j.phpro.2012.03.015 (2012). Proceedings of the first two meetings of the Union of Compact Accelerator-Driven Neutron Sources.Dawidowski, J., Santisteban, J. & Granada, J. Exploration of the dynamics of condensed matter through neutron total cross-section measurements. Phys. B 271, 212–222. https://doi.org/10.1016/S0921-4526(99)00216-1 (1999).Article 
ADS 
CAS 

Google Scholar 
Fernandez-Alonso, F. & Price, D. (eds) Neutron Scattering—Applications in Biology, Chemistry, and Materials science (Academic Press, 2017).
Google Scholar 
Sears, V. F. Neutron scattering lengths and cross sections. Neutron News 3, 26–37 (1992).Article 

Google Scholar 
Dawidowski, J., Granada, J. R., Santisteban, J. R., Cantargi, F. & Rodríguez Palomino, L. A. Neutron scattering lengths and cross sections. In Fernandez-Alonso, F. & Price, D. L. (eds.) Neutron Scattering – Fundamentals, vol. 44 of Experimental Methods in the Physical Sciences, chap. Appendix, 471 – 528 (Academic Press, 2013).Mayers, J. & Adams, M. Calibration of an electron volt neutron spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A 625, 47–56. https://doi.org/10.1016/j.nima.2010.09.079 (2011).Article 
ADS 
CAS 

Google Scholar 
Mirfayzi, S. R. et al. Experimental demonstration of a compact epithermal neutron source based on a high power laser. Appl. Phys. Lett. 111, 044101. https://doi.org/10.1063/1.4994161 (2017).Article 
ADS 
CAS 

Google Scholar 
Horný, V. C. V., Chen, S. N., Davoine, X. & Gremillet, L. Quantitative feasibility study of sequential neutron captures using intense lasers. Phys. Rev. C. 109, 025802. https://doi.org/10.1103/PhysRevC.109.025802 (2024).Article 
ADS 

Google Scholar 
Mirani, F., Maffini, A. & Passoni, M. Laser-driven neutron generation with near-critical targets and application to materials characterization. Phys. Rev. Appl. 19, 044020. https://doi.org/10.1103/PhysRevApplied.19.044020 (2023).Article 
ADS 
CAS 

Google Scholar 
Zimmer, M. et al. Demonstration of non-destructive and isotope-sensitive material analysis using a short-pulsed laser-driven epi-thermal neutron source. Nat. Commun.https://doi.org/10.1038/s41467-022-28756-0 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Yogo, A. et al. Laser-driven neutron generation realizing single-shot resonance spectroscopy. Phys. Rev. x 13, 011011. https://doi.org/10.1103/PhysRevX.13.011011 (2023).Article 
CAS 

Google Scholar 
Mori, T. et al. Feasibility study of laser-driven neutron sources for pharmaceutical applications. High Power Laser Sci. Eng.https://doi.org/10.1017/hpl.2023.4 (2023).Article 

Google Scholar 
Li, Y. et al. Micro-size picosecond-duration fast neutron source driven by a laser-plasma wakefield electron accelerator. High Power Laser Sci. Eng. 10, e33. https://doi.org/10.1017/hpl.2022.27 (2022).Article 
ADS 
CAS 

Google Scholar 
Jaehong, L. et al. Designs and neutronic characteristics of an epithermal neutron moderator at ambient temperature for neutron time-of-flight measurements. J. Nucl. Sci. Technol. 59, 1546–1557. https://doi.org/10.1080/00223131.2022.2077259 (2022).Article 
CAS 

Google Scholar 
Mori, T. et al. Thermal neutron fluence measurement using a cadmium differential method at the laser-driven neutron source. J. Phys. G-Nucl. Part. Phys.https://doi.org/10.1088/1361-6471/ac6272 (2022).Article 

Google Scholar 
Wei, T. et al. Non-destructive inspection of water or high-pressure hydrogen gas in metal pipes by the flash of neutrons and x rays generated by laser. AIP Adv.https://doi.org/10.1063/5.0088997 (2022).Article 

Google Scholar 
Mima, K. et al. Laser-driven neutron source and nuclear resonance absorption imaging at Ile, Osaka University: Review. Appl. Opt. 61, 2398–2405. https://doi.org/10.1364/AO.444628 (2022).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Mirfayzi, S. R. et al. A miniature thermal neutron source using high power lasers. Appl. Phys. Lett.https://doi.org/10.1063/5.0003170 (2020).Article 

Google Scholar 
Romanelli, G. et al. Characterisation of the incident beam and current diffraction capabilities on the VESUVIO spectrometer. Meas. Sci. Technol. 28, 095501–6. https://doi.org/10.1088/1361-6501/aa7c2a (2017).Article 
ADS 
CAS 

Google Scholar 
Krzystyniak, M. et al. VESUVIO plus: The current testbed for a next-generation epithermal neutron spectrometer. J. Phys. Conf. Ser. 1021, 012026. https://doi.org/10.1088/1742-6596/1021/1/012026 (2018).Article 
CAS 

Google Scholar 
Kumar, A. et al. Origin of natural and magnetic field induced polar order in orthorhombic PrFe\(_1/2\)Cr\(_1/2\)O\(_3\). Phys. Rev. B104, 035101. https://doi.org/10.1103/PhysRevB.104.035101 (2021).Article 
ADS 

Google Scholar 
Onorati, D. et al. Gamma background characterization on VESUVIO: Before and after the moderator upgrade. In VII International Workshop on Electron-Volt Neutron Spectroscopy, vol. 1055 of Journal of Physics Conference Series, https://doi.org/10.1088/1742-6596/1055/1/012009 (British Embassy Rome; Museo Storico Fisica Centro Studi Rech Enrico Fermi; Consiglio Nazionale Ric; ISIS Neutron & Muon Source; UK Sci & Innovat Network; Univ Roma; SoNS, 2018). Villa Wolkonsky & Centro Studi Ric Enrico Fermi, Rome, ITALY, NOV 07-08, 2017.Romanelli, G., Krzystyniak, M. & Fernandez-Alonso, F. Neutron-resonance capture analysis on the VESUVIO spectrometer: Towards high-throughput material characterisation. In VII International Workshop on Electron-Volt Neutron Spectroscopy, vol. 1055 of Journal of Physics Conference Series, https://doi.org/10.1088/1742-6596/1055/1/012015 (British Embassy Rome; Museo Storico Fisica Centro Studi Rech Enrico Fermi; Consiglio Nazionale Ric; ISIS Neutron & Muon Source; UK Sci & Innovat Network; Univ Roma; SoNS, 2018). Villa Wolkonsky & Centro Studi Ric Enrico Fermi, Rome, ITALY, NOV 07-08, 2017.Yang, Q. et al. Qualitative and semi-quantitative analysis of melamine in liquid milk based on surface-enhanced Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 303, 123143. https://doi.org/10.1016/j.saa.2023.123143 (2023).Article 
CAS 

Google Scholar 
Yin, M., Zhao, L., Wei, Q. & Li, H. Rapid colorimetric detection of melamine by \(H_{2}O_{2}\)-Au nanoparticles. RSC Adv. 5, 32897–32901. https://doi.org/10.1039/C5RA02717A (2015).Article 
ADS 
CAS 

Google Scholar 
Wang, T. et al. Hydrophilic solid-phase extraction of melamine with ampholine-modified hybrid organic-inorganic silica material. J. Sep. Sci. 38, 87–92. https://doi.org/10.1002/jssc.201400900 (2015).Article 
CAS 
PubMed 

Google Scholar 
Steiner, R. R. & Larson, R. L. Validation of the direct analysis in real time source for use in forensic drug screening. J. Forensic Sci. 54, 617–622. https://doi.org/10.1111/j.1556-4029.2009.01006.x (2009).Article 
CAS 
PubMed 

Google Scholar 
Ciechanowski, M., Bolewski, A. Jr. & Kreft, A. Absolute determination of the neutron source yield using melamine as a neutron detector. J. Instrum. 10, 01001. https://doi.org/10.1088/1748-0221/10/01/P01001 (2015).Article 
CAS 

Google Scholar 
Yoshikawa, K. et al. Research and development of a compact discharge-driven d–d fusion neutron source for explosive detection. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms261, 299–302, https://doi.org/10.1016/j.nimb.2007.04.026 (2007). The Application of Accelerators in Research and Industry.Miyazaki, I. et al. Precise intensity measurements in the 14n(n, \(\gamma \))15n reaction as a \(\gamma \)-ray intensity standard up to 11mev. J. Nucl. Sci. Technol. 45, 481–486. https://doi.org/10.1080/18811248.2008.9711871 (2008).Article 
CAS 

Google Scholar 
Nasrabadi, M., Bakhshi, F., Jalali, M. & Mohammadi, A. Development of a technique using MCNPX code for determination of nitrogen content of explosive materials using prompt gamma neutron activation analysis method. Nucl. Instrum. Methods Phys. Res. Sect. A 659, 378–382. https://doi.org/10.1016/j.nima.2011.08.029 (2011).Article 
ADS 
CAS 

Google Scholar 
Bishnoi, S. et al. Modeling of tagged neutron method for explosive detection using GEANT4. Nucl. Instrum. Methods Phys. Res. Sect. A 923, 26–33. https://doi.org/10.1016/j.nima.2019.01.037 (2019).Article 
ADS 
CAS 

Google Scholar 
Takahashi, Y., Misawa, T., Shiroya, C. H. P. S. & Yoshikawa, K. Development of land mine detector system based on the measurements of capture \(\gamma \)-rays with anticoincidence and coincidence methods. J. Nucl. Sci. Technol. 48, 31–38. https://doi.org/10.1080/18811248.2011.9711676 (2011).Article 
CAS 

Google Scholar 
Bishnoi, S. et al. Study of tagged neutron method with laboratory d-t neutron generator for explosive detection. Eur. Phys. J. Plus 135, 428. https://doi.org/10.1140/epjp/s13360-020-00402-y (2020).Article 
CAS 

Google Scholar 
Price, A. J. A., Otero-de-la Roza, A. & Johnson, E. R. XDM-corrected hybrid DFT with numerical atomic orbitals predicts molecular crystal lattice energies with unprecedented accuracy. Chem. Sci. 14, 1252–1262. https://doi.org/10.1039/d2sc05997e (2023).Article 
CAS 
PubMed 

Google Scholar 
Rossi, M., Ceriotti, M. & Manolopoulos, D. E. How to remove the spurious resonances from ring polymer molecular dynamics. J. Chem. Phys. 140, 234116. https://doi.org/10.1063/1.4883861 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Rossi, M., Liu, H., Paesani, F., Bowman, J. & Ceriotti, M. Communication: On the consistency of approximate quantum dynamics simulation methods for vibrational spectra in the condensed phase. J. Chem. Phys. 141, 181101–5. https://doi.org/10.1063/1.4901214 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Monacelli, L. et al. The stochastic self-consistent harmonic approximation: Calculating vibrational properties of materials with full quantum and anharmonic effects. J. Phys. Condens. Matter 33, 363001. https://doi.org/10.1088/1361-648x/ac066b (2021).Article 
CAS 

Google Scholar 
Michalchuk, A. et al. Predicting the reactivity of energetic materials: An ab initio multi-phonon approach. J. Mater. Chem. A 7, 19539–19553. https://doi.org/10.1039/c9ta06209b (2019).Article 
CAS 

Google Scholar 
Seel, A. G., Krzystyniak, M. & Fernandez-Alonso, F. The VESUVIO spectrometer now and when?. J. Phys. Conf. Ser. 571, 012006–11. https://doi.org/10.1088/1742-6596/571/1/012006 (2014).Article 

Google Scholar 
Mayers, J. & Reiter, G. The VESUVIO electron volt neutron spectrometer. Meas. Sci. Technol. 23, 045902–18. https://doi.org/10.1088/0957-0233/23/4/045902 (2012).Article 
ADS 
CAS 

Google Scholar 
Krzystyniak, M. et al. Nuclear quantum dynamics in hexamethylenetetramine and its deuterated counterpart: A DFT-augmented neutron study. Phys. Scr. 98, 025707. https://doi.org/10.1088/1402-4896/acb323 (2023).Article 
ADS 

Google Scholar 
Rodriguez-Palomino, L. et al. Neutron total cross-section of hydrogenous and deuterated 1- and 2-propanol and n-butanol measured using the VESUVIO spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A 870, 84–89. https://doi.org/10.1016/j.nima.2017.07.027 (2017).Article 
ADS 
CAS 

Google Scholar 
Palomino, L. R. et al. Determination of the scattering cross section of calcium using the VESUVIO spectrometer. Nucl. Instrum. Methods Phys. Res. A 927, 443–450. https://doi.org/10.1016/j.nima.2019.02.072 (2019).Article 
ADS 
CAS 

Google Scholar 
Krzystyniak, M., Drużbicki, K. & Fernandez-Alonso, F. Nuclear dynamics in the metastable phase of the solid acid caesium hydrogen sulfate. Phys. Chem. Chem. Phys. 17, 31287–31296. https://doi.org/10.1039/c5cp05636e (2015).Article 
CAS 
PubMed 

Google Scholar 
Krzystyniak, M. & Fernandez-Alonso, F. Ab initio nuclear momentum distributions in lithium hydride: Assessing nonadiabatic effects. Phys. Rev. B 83, 134305–10. https://doi.org/10.1103/PhysRevB.83.134305 (2011).Article 
ADS 
CAS 

Google Scholar 
Krzystyniak, M., Richards, S. E., Seel, A. G. & Fernandez-Alonso, F. Mass-selective neutron spectroscopy of lithium hydride and deuteride: Experimental assessment of the harmonic and impulse approximations. Phys. Rev. B 88, 184304–16. https://doi.org/10.1103/PhysRevB.88.184304 (2013).Article 
ADS 
CAS 

Google Scholar 
Wallis, J., Kruth, A., da Silva, I. & Krzystyniak, M. Nuclear dynamics in \({\rm BaZr}_{0.7}{\rm Ce}_{0.2}{\rm Y}_{0.1}{O}_{0.3-\delta }\) proton conductor as observed by neutron diffraction and Compton scattering. J. Phys. Commun. 4, 045004. https://doi.org/10.1088/2399-6528/ab852d (2020).Article 
CAS 

Google Scholar 
Andreani, C., Senesi, R., Krzystyniak, M., Romanelli, G. & Fernandez-Alonso, F. F. Experimental studies of nuclear quantum effects in condensed matter: The case of water. La Rivista del Nuovo Cimento 41, 291–340. https://doi.org/10.1393/ncr/i2018-10147-9 (2018).Article 
ADS 
CAS 

Google Scholar 
Tian, K. V. et al. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting. Nat. Commun. 6, 8631. https://doi.org/10.1038/ncomms9631 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Krzystyniak, M., Seel, A. G., Richards, S. E., Gutmann, M. J. & Fernandez-Alonso, F. Mass-selective neutron spectroscopy beyond the proton. J. Phys. Conf. Ser. 571, 012002–11. https://doi.org/10.1088/1742-6596/571/1/012002 (2014).Article 

Google Scholar 
Krzystyniak, M., Drużbicki, K., Rudić, S. & Fabian, M. Positional, isotopic mass and force constant disorder in molybdate glasses and their parent metal oxides as observed by neutron diffraction and Compton scattering. J. Phys. Commun. 4, 095027. https://doi.org/10.1088/2399-6528/abb8ee (2020).Article 
CAS 

Google Scholar 
Krzystyniak, M. et al. Mass-selective neutron spectroscopy of glassy versus polycrystalline structures in binary mixtures of beryllium and zirconium. J. Phys. Conf. Ser. 1055, 012004. https://doi.org/10.1088/1742-6596/1055/1/012004 (2018).Article 
CAS 

Google Scholar 
Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations – molecular-dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).Article 
ADS 
CAS 

Google Scholar 
Clark, S. J. et al. First principles methods using castep. Z. Kristallogr. 220, 567–570. https://doi.org/10.1524/zkri.220.5.567.65075 (2005).Article 
CAS 

Google Scholar 
Łuczyńska, K., Drużbicki, K., Lyczko, K. & Starosta, W. Complementary optical and neutron vibrational spectroscopy study of bromanilic acid: 2, 3, 5, 6-tetramethylpyrazine (1:1) cocrystal. Vib. Spectrosc. 75, 26–38. https://doi.org/10.1016/j.vibspec.2014.09.002 (2014).Article 
CAS 

Google Scholar 
Vízquez-Ferníndez, I. et al. Spectroscopic signatures of hydrogen-bonding motifs in protonic ionic liquid systems: Insights from diethylammonium nitrate in the solid state.. J. Phys. Chem. C 125, 24463–24476. https://doi.org/10.1021/acs.jpcc.1c05137 (2021).Article 
CAS 

Google Scholar 
Łuczyńska, K., Drużbicki, K., Lyczko, K. & Dobrowolski, J. C. Experimental (x-ray, 13c CP/MAS NMR, IR, RS, INS, THz) and solid-state DFT study on (1:1) co-crystal of bromanilic acid and 2, 6-dimethylpyrazine. J. Phys. Chem. B 119, 6852–6872. https://doi.org/10.1021/acs.jpcb.5b03279 (2015).Article 
CAS 
PubMed 

Google Scholar 
Łuczyńska, K., Drużbicki, K., Lyczko, K. & Dobrowolski, J. C. Structure–spectra correlations in anilate complexes with picolines. Cryst. Growth Des. 16, 6069–6083. https://doi.org/10.1021/acs.cgd.6b01114 (2016).Article 
CAS 

Google Scholar 
Drużbicki, K., Mikuli, E., Pałka, N., Zalewski, S. & Ossowska-Chruściel, M. D. Polymorphism of resorcinol explored by complementary vibrational spectroscopy (FT-RS, THz-TDS, INS) and first-principles solid-state computations (plane-wave DFT). J. Phys. Chem. B 119, 1681–1695. https://doi.org/10.1021/jp507241j (2015).Article 
CAS 
PubMed 

Google Scholar 
Drużbicki, K. et al. Computationally assisted (solid-state density functional theory) structural (x-ray) and vibrational spectroscopy (FT-IR, FT-RS, TDs-THz) characterization of the cardiovascular drug lacidipine. Cryst. Growth Des. 15, 2817–2830. https://doi.org/10.1021/acs.cgd.5b00251 (2015).Article 
CAS 

Google Scholar 
Tosoni, S., Tuma, C., Sauer, J., Civalleri, B. & Ugliengo, P. A comparison between plane wave and Gaussian-type orbital basis sets for hydrogen bonded systems: Formic acid as a test case. J. Chem. Phys.https://doi.org/10.1063/1.2790019 (2007).Article 
PubMed 

Google Scholar 
Jepsen, P. U. & Clark, S. J. Precise ab-initio prediction of terahertz vibrational modes in crystalline systems. Chem. Phys. Lett. 442, 275–280. https://doi.org/10.1016/j.cplett.2007.05.112 (2007).Article 
ADS 
CAS 

Google Scholar 
Marín-Villa, P., Arauzo, A., Drużbicki, K. & Fernandez-Alonso, F. Unraveling the ordered phase of the quintessential hybrid perovskite MAPbI\(_3\) – Thermophysics to the rescue. J. Phys. Chem. Lett. 13, 8422–8428. https://doi.org/10.1021/acs.jpclett.2c02208 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kendrick, J. & Burnett, A. D. Pdielec: The calculation of infrared and terahertz absorption for powdered crystals. J. Comput. Chem. 37, 1491–1504. https://doi.org/10.1002/jcc.24344 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Baroni, S., Giannozzi, P. & Testa, A. Green’s-function approach to linear response in solids. Phys. Rev. Lett. 58, 1861–1864. https://doi.org/10.1103/physrevlett.58.1861 (1987).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Gonze, X. Perturbation expansion of variational principles at arbitrary order. Phys. Rev. A 52, 1086–1095. https://doi.org/10.1103/physreva.52.1086 (1995).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Gonze, X. Adiabatic density-functional perturbation theory. Phys. Rev. A 52, 1096–1114. https://doi.org/10.1103/physreva.52.1096 (1995).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Krzystyniak, M. & Fernandez-Alonso, F. Ab initio nuclear momentum distributions in lithium hydride: Assessing nonadiabatic effects. Phys. Rev. B 83, 134305–10 (2011).Article 
ADS 

Google Scholar 
Brehm, M. & Kirchner, B. TRAVIS – a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories. J. Chem. Inf. Model. 51, 2007–2023. https://doi.org/10.1021/ci200217w (2011).Article 
CAS 
PubMed 

Google Scholar 
Thomas, M., Brehm, M., Fligg, R., Vöhringer, P. & Kirchner, B. Computing vibrational spectra from \( {ab~initio}\) molecular dynamics. Phys. Chem. Chem. Phys. 15, 6608–6622. https://doi.org/10.1039/c3cp44302g (2013).Article 
CAS 
PubMed 

Google Scholar 
Krzystyniak, M. et al. Nuclear dynamics and phase polymorphism in solid formic acid. Phys. Chem. Chem. Phys. 19, 9064–9074. https://doi.org/10.1039/c7cp00997f (2017).Article 
CAS 
PubMed 

Google Scholar 
Drużbicki, K. et al. Hydrogen dynamics in solid formic acid: Insights from simulations with quantum colored-noise thermostats. J. Phys. Conf. Ser. 1055, 012003. https://doi.org/10.1088/1742-6596/1055/1/012003 (2018).Article 
CAS 

Google Scholar 
Cai, X.-X. & Kittelmann, T. Ncrystal: A library for thermal neutron transport. Comput. Phys. Commun. 246, 106851. https://doi.org/10.1016/j.cpc.2019.07.015 (2020).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles