Upcycling waste sewage sludge into superior single-atom Fenton-like catalyst for sustainable water purification

Lapointe, M., Rochman, C. M. & Tufenkji, N. Sustainable strategies to treat urban runoff needed. Nat. Sustain. 5, 366–369 (2022).Article 

Google Scholar 
Li, W., Yu, H. & Rittmann, B. E. Chemistry: reuse water pollutants. Nature 528, 29–31 (2015).Article 
CAS 
PubMed 

Google Scholar 
Trimmer, J. T. & Guest, J. S. Recirculation of human-derived nutrients from cities to agriculture across six continents. Nat. Sustain. 1, 427–435 (2018).Article 

Google Scholar 
Hao, X., Chen, Q., van Loosdrecht, M. C. M., Li, J. & Jiang, H. Sustainable disposal of excess sludge: incineration without anaerobic digestion. Water Res. 170, 115298 (2020).Article 
CAS 
PubMed 

Google Scholar 
Tiwari, J. N. et al. Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nat. Sustain. 3, 556–563 (2020).Article 

Google Scholar 
Huang, B., Jiang, J., Huang, G. & Yu, H. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate. J. Mater. Chem. A 6, 8978–8985 (2018).Article 
CAS 

Google Scholar 
Lu, L. et al. Wastewater treatment for carbon capture and utilization. Nat. Sustain. 1, 750–758 (2018).Article 

Google Scholar 
Huang, B. et al. Electrochemically catalytic degradation of phenol with hydrogen peroxide in situ generated and activated by a municipal sludge-derived catalyst. ACS Sustain. Chem. Eng. 6, 5540–5546 (2018).Article 
CAS 

Google Scholar 
Zhang, H. et al. Sewage sludge-derived catalyst for extremely efficient electrocatalytic elimination of organic pollutants in water. Chem. Eng. J. 469, 143777 (2023).Article 
CAS 

Google Scholar 
Li, L. et al. Fe/Mn loaded sludge-based carbon materials catalyzed oxidation for antibiotic degradation: persulfate vs H2O2 as oxidant. Sep. Purif. Technol. 263, 118409 (2021).Article 
CAS 

Google Scholar 
Yuan, S. & Dai, X. An efficient sewage sludge-derived bi-functional electrocatalyst for oxygen reduction and evolution reaction. Green Chem. 18, 4004–4011 (2016).Article 
CAS 

Google Scholar 
Beniya, A. & Higashi, S. Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2, 590–602 (2019).Article 

Google Scholar 
Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).Article 
CAS 

Google Scholar 
Xu, H., Cheng, D., Cao, D. & Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1, 339–348 (2018).Article 
CAS 

Google Scholar 
Mitchell, S. & Pérez-Ramírez, J. Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nat. Commun. 11, 4302 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jeong, H. et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 3, 368–375 (2020).Article 
CAS 

Google Scholar 
Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).Article 
CAS 
PubMed 

Google Scholar 
Qin, R., Liu, K., Wu, Q. & Zheng, N. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 120, 11810–11899 (2020).Article 
CAS 
PubMed 

Google Scholar 
van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).Article 

Google Scholar 
Xiong, Y. et al. Single-atom Fe catalysts for Fenton-like reactions: roles of different N species. Adv. Mater. 34, 2110653 (2022).Article 
CAS 

Google Scholar 
Yuan, K. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 142, 2404–2412 (2020).Article 
CAS 
PubMed 

Google Scholar 
Chen, Y. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9, 5422 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hannagan, R. T., Giannakakis, G., Flytzani-Stephanopoulos, M. & Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 120, 12044–12088 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhao, X., Wang, F., Kong, X., Fang, R. & Li, Y. Dual-metal hetero-single-atoms with different coordination for efficient synergistic catalysis. J. Am. Chem. Soc. 143, 16068–16077 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhou, Y. et al. Peripheral-nitrogen effects on the Ru1 centre for highly efficient propane dehydrogenation. Nat. Catal. 5, 1145–1156 (2022).Article 
CAS 

Google Scholar 
Zhang, S. et al. Atomically dispersed bimetallic Fe-Co electrocatalysts for green production of ammonia. Nat. Sustain. 6, 169–179 (2023).Article 

Google Scholar 
Zhang, J. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 141, 20118–20126 (2019).Article 
CAS 
PubMed 

Google Scholar 
van Bokhoven, J. A. & Lamberti, C. X-ray Absorption and X-ray Emission Spectroscopy: Theory and Applications (John Wiley & Sons, 2016).Scheinost, A. C., Chukalina, M. & Funke, H. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 71, 94110 (2005).Article 

Google Scholar 
Bunău, O. & Joly, Y. Self-consistent aspects of X-ray absorption calculations. J. Phys. Condens. Matter 21, 345501 (2009).Article 
PubMed 

Google Scholar 
Jin, Z. et al. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4, 615–622 (2021).Article 
CAS 

Google Scholar 
Liu, W. et al. Discriminating catalytically active FeNx species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 139, 10790–10798 (2017).Fei, H. et al. General synthesis and definitive structural identification of Mn4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).Article 
CAS 

Google Scholar 
Zitolo, A. et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015).Article 
CAS 
PubMed 

Google Scholar 
Li, X. et al. Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material. Chem 6, 3440–3454 (2020).Article 
CAS 

Google Scholar 
Wan, X. et al. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019).Li, X. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 140, 12469–12475 (2018).Article 
CAS 
PubMed 

Google Scholar 
Miao, J., Geng, W., Alvarez, P. J. J. & Long, M. 2D N-doped porous carbon derived from polydopamine-coated graphitic carbon nitride for efficient nonradical activation of peroxymonosulfate. Environ. Sci. Technol. 54, 8473–8481 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ren, W. et al. Activation of peroxydisulfate on carbon nanotubes: electron-transfer mechanism. Environ. Sci. Technol. 53, 14595–14603 (2019).Article 
CAS 
PubMed 

Google Scholar 
Xu, J. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 4, 233–241 (2021).Article 
PubMed 

Google Scholar 
Sun, Y. et al. Spin-related electron transfer and orbital interactions in oxygen electrocatalysis. Adv. Mater. 32, 2003297 (2020).Article 
CAS 

Google Scholar 
Sun, G. L., Reynolds, E. E. & Belcher, A. M. Using yeast to sustainably remediate and extract heavy metals from waste waters. Nat. Sustain. 3, 303–311 (2020).Article 

Google Scholar 
Tonini, D., Saveyn, H. G. M. & Huygens, D. Environmental and health co-benefits for advanced phosphorus recovery. Nat. Sustain. 2, 1051–1061 (2019).Article 

Google Scholar 
Huang, M. et al. Facilely tuning the intrinsic catalytic sites of the spinel oxide for peroxymonosulfate activation: from fundamental investigation to pilot-scale demonstration. Proc. Natl Acad. Sci. USA 119, e2092285177 (2022).Article 

Google Scholar 
Dong, J., Chi, Y., Tang, Y., Wang, F. & Huang, Q. Combined life cycle environmental and exergetic assessment of four typical sewage sludge treatment techniques in China. Energ. Fuel. 28, 2114–2122 (2014).Article 
CAS 

Google Scholar 
Wei, L. et al. Development, current state and future trends of sludge management in China: based on exploratory data and CO2-equivaient emissions analysis. Environ. Int. 144, 106093 (2020).Article 
CAS 
PubMed 

Google Scholar 
Jiang, L. et al. PEF plastic synthesized from industrial carbon dioxide and biowaste. Nat. Sustain. 3, 761–767 (2020).Article 

Google Scholar 
Gu, C. H. NATWATER-23-1448B SourceData. Figshare https://doi.org/10.6084/m9.figshare.25780320.v1 (2024).

Hot Topics

Related Articles