Tip-enhanced Raman scattering | Nature Reviews Methods Primers

Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3132 (2000).Article 
ADS 

Google Scholar 
Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000).Article 
ADS 

Google Scholar 
Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).Article 
ADS 

Google Scholar 
Domke, K. F., Zhang, D. & Pettinger, B. Toward Raman fingerprints of single dye molecules at atomically smooth Au(111). J. Am. Chem. Soc. 128, 14721–14727 (2006).Article 

Google Scholar 
Neacsu, C. C., Dreyer, J., Behr, N. & Raschke, M. B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys. Rev. B 73, 193406 (2006).Article 
ADS 

Google Scholar 
Zhang, W., Yeo, B. S., Schmid, T. & Zenobi, R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111, 1733–1738 (2007).Article 

Google Scholar 
Richard-Lacroix, M., Zhang, Y., Dong, Z. & Deckert, V. Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception. Chem. Soc. Rev. 46, 3922–3944 (2017).Article 

Google Scholar 
Hartschuh, A., Sánchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).Article 
ADS 

Google Scholar 
Chen, C., Hayazawa, N. & Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5, 3312 (2014).Article 
ADS 

Google Scholar 
Anderson, N., Hartschuh, A. & Novotny, L. Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. Nano Lett. 7, 577–582 (2007).Article 
ADS 

Google Scholar 
Anderson, N., Hartschuh, A., Cronin, S. & Novotny, L. Nanoscale vibrational analysis of single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 2533–2537 (2005).Article 

Google Scholar 
Liao, M. et al. Tip-enhanced Raman spectroscopic imaging of individual carbon nanotubes with subnanometer resolution. Nano Lett. 16, 4040–4046 (2016).Article 
ADS 

Google Scholar 
Yano, T.-A. et al. Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes. Nat. Commun. 4, 2592 (2013).Article 
ADS 

Google Scholar 
Schultz, J. F. & Jiang, N. Characterizations of two-dimensional materials with cryogenic ultrahigh vacuum near-field optical microscopy in the visible range. J. Vac. Sci. Technol. A 40, 40801 (2022). This review article discusses the technical challenges and advantages of cryogenic UHV TERS and STM-induced luminescence.Article 

Google Scholar 
Ren, B., Picardi, G., Pettinger, B., Schuster, R. & Ertl, G. Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces. Angew. Chem. Int. Ed. 44, 139–142 (2005).Article 

Google Scholar 
Wang, X. et al. Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips. Appl. Phys. Lett. 91, 101105 (2007).Article 
ADS 

Google Scholar 
Chiang, N. et al. Conformational contrast of surface-mediated molecular switches yields Ångstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopy. Nano Lett. 16, 7774–7778 (2016).Article 
ADS 

Google Scholar 
Braun, K. et al. Probing bias-induced electron density shifts in metal–molecule interfaces via tip-enhanced Raman scattering. J. Am. Chem. Soc. 143, 1816–1821 (2021).Article 

Google Scholar 
Zhang, D., Domke, K. F. & Pettinger, B. Tip-enhanced Raman spectroscopic studies of the hydrogen bonding between adenine and thymine adsorbed on Au (111). ChemPhysChem 11, 1662–1665 (2010).Article 

Google Scholar 
Wang, X. et al. Revealing intermolecular interaction and surface restructuring of an aromatic thiol assembling on Au(111) by tip-enhanced Raman spectroscopy. Anal. Chem. 88, 915–921 (2016).Article 

Google Scholar 
Pandey, Y., Kumar, N., Goubert, G. & Zenobi, R. Nanoscale chemical imaging of supported lipid monolayers using tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 60, 19041–19046 (2021).Article 

Google Scholar 
Jiang, N. et al. Nanoscale chemical imaging of a dynamic molecular phase boundary with ultrahigh vacuum tip-enhanced Raman spectroscopy. Nano Lett. 16, 3898–3904 (2016).Article 
ADS 

Google Scholar 
Kurouski, D., Deckert-Gaudig, T., Deckert, V. & Lednev, I. K. Structural characterization of insulin fibril surfaces using tip enhanced Raman spectroscopy (TERS). Biophys. J. 104, 49A (2014).Article 

Google Scholar 
Deckert-Gaudig, T. & Deckert, V. High resolution spectroscopy reveals fibrillation inhibition pathways of insulin. Sci. Rep. 6, 39622 (2016).Article 
ADS 

Google Scholar 
Krasnoslobodtsev, A., Deckert-Gaudig, T., Zhang, Y., Deckert, V. & Lyubchenko, Y. L. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and tip-enhanced Raman scattering studies. Ultramicroscopy 165, 26–33 (2016).Article 

Google Scholar 
Paulite, M. et al. Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments. ACS Nano 7, 911–920 (2013).Article 

Google Scholar 
Lipiec, E., Perez-Guaita, D., Kaderli, J., Wood, B. R. & Zenobi, R. Direct nanospectroscopic verification of the amyloid aggregation pathway. Angew. Chem. Int. Ed. 57, 8519–8524 (2018).Article 

Google Scholar 
Talaga, D. et al. Total internal reflection tip-enhanced Raman spectroscopy of tau fibrils. J. Phys. Chem. B 126, 5024–5032 (2022).Article 

Google Scholar 
Bonhommeau, S., Talaga, D., Hunel, J., Cullin, C. & Lecomte, S. Tip-enhanced Raman spectroscopy to distinguish toxic oligomers from Aβ1–42 fibrils at the nanometer scale. Angew. Chem. Int. Ed. 56, 1771–1774 (2017).Article 

Google Scholar 
D’Andrea, C. et al. Nanoscale discrimination between toxic and nontoxic protein misfolded oligomers with tip-enhanced Raman spectroscopy. Small 14, 1800890 (2018).Article 

Google Scholar 
vandenAkker, C. et al. Nanoscale heterogeneity of the molecular structure of individual hIAPP amyloid fibrils revealed with tip-enhanced Raman spectroscopy. Small 11, 4131–4139 (2015).Article 

Google Scholar 
Yeo, B.-S., Amstad, E., Schmid, T., Stadler, J. & Zenobi, R. Nanoscale probing of a polymer-blend thin film with tip-enhanced Raman spectroscopy. Small 5, 952–960 (2009).Article 

Google Scholar 
Xue, L. et al. High-resolution chemical identification of polymer blend thin films using tip-enhanced Raman mapping. Macromolecules 44, 2852–2858 (2011).Article 
ADS 

Google Scholar 
Agapov, R. L., Scherger, J. D., Sokolov, A. P. & Foster, M. D. Identification of individual isotopes in a polymer blend using tip enhanced Raman spectroscopy. J. Raman Spectrosc. 46, 447–450 (2015).Article 
ADS 

Google Scholar 
Höppener, C., Elter, J. K., Schacher, F. H. & Deckert, V. Inside block copolymer micelles — tracing interfacial influences on crosslinking efficiency in nanoscale confined spaces. Small 19, 2206451 (2023).Article 

Google Scholar 
Höppener, C., Schacher, F. H. & Deckert, V. Multimodal characterization of resin embedded and sliced polymer nanoparticles by means of tip-enhanced Raman spectroscopy and force-distance curve based atomic force microscopy. Small 112, 1907418 (2020).Article 

Google Scholar 
van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012).Article 
ADS 

Google Scholar 
Sun, M., Zhang, Z., Zheng, H. & Xu, H. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci. Rep. 2, 647 (2012).Article 
ADS 

Google Scholar 
Pfisterer, J. H. K., Baghernejad, M., Giuzio, G. & Domke, K. F. Reactivity mapping of nanoscale defect chemistry under electrochemical reaction conditions. Nat. Commun. 10, 5702 (2019).Article 
ADS 

Google Scholar 
Zhong, J.-H. et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat. Nanotechnol. 12, 132–136 (2017).Article 
ADS 

Google Scholar 
Shao, F. et al. In-situ nanospectroscopic imaging of plasmon-induced two-dimensional [4+4]-cycloaddition polymerization on Au(111). Nat. Commun. 12, 4557 (2021).Article 
ADS 

Google Scholar 
Mahapatra, S. et al. Localized surface plasmon controlled chemistry at and beyond the nanoscale. Chem. Phys. Rev. 4, 021301 (2023).Article 

Google Scholar 
Trautmann, S. et al. A classical description of subnanometer resolution by atomic features in metallic structures. Nanoscale 9, 391–401 (2017).Article 

Google Scholar 
Jakob, L. A. et al. Giant optomechanical spring effect in plasmonic nano- and picocavities probed by surface-enhanced Raman scattering. Nat. Commun. 14, 3291 (2023).Article 
ADS 

Google Scholar 
García de Abajo, F. J. & Howie, A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002).Article 
ADS 

Google Scholar 
Hohenester, U. & Trügler, A. MNPBEM — a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 183, 370–381 (2012).Article 
ADS 

Google Scholar 
Cvitkovic, A., Ocelic, N., Aizpurua, J., Guckenberger, R. & Hillenbrand, R. Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap. Phys. Rev. Lett. 97, 060801 (2006).Article 
ADS 

Google Scholar 
Barbry, M. et al. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. Nano Lett. 15, 3410–3419 (2015).Article 
ADS 

Google Scholar 
Schmidt, M. K., Esteban, R., González-Tudela, A., Giedke, G. & Aizpurua, J. Quantum mechanical description of Raman scattering from molecules in plasmonic cavities. ACS Nano 10, 6291–6298 (2016).Article 

Google Scholar 
Baumberg, J. J. Picocavities: a primer. Nano Lett. 22, 5859–5865 (2022).Article 
ADS 

Google Scholar 
Benz, F. et al. Single-molecule optomechanics in “picocavities”. Science 354, 726–729 (2016).Article 
ADS 

Google Scholar 
Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).Article 
ADS 

Google Scholar 
Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019).Article 
ADS 

Google Scholar 
Jiang, S. et al. Subnanometer-resolved chemical imaging via multivariate analysis of tip-enhanced Raman maps. Light Sci. Appl. 6, e17098 (2017).Article 

Google Scholar 
Kong, F.-F. et al. Probing intramolecular vibronic coupling through vibronic-state imaging. Nat. Commun. 12, 1280 (2021).Article 
ADS 

Google Scholar 
Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366 (2003).Article 
ADS 

Google Scholar 
Zou, S., Janel, N. & Schatz, G. C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120, 10871–10875 (2004).Article 
ADS 

Google Scholar 
Gieseking, R. L., Ratner, M. A. & Schatz, G. C. Semiempirical modeling of Ag nanoclusters: new parameters for optical property studies enable determination of double excitation contributions to plasmonic excitation. J. Phys. Chem. A 120, 4542–4549 (2016).Article 

Google Scholar 
Ding, W., Hsu, L.-Y., Heaps, C. W. & Schatz, G. C. Plasmon-coupled resonance energy transfer II: exploring the peaks and dips in the electromagnetic coupling factor. J. Phys. Chem. C 122, 22650–22659 (2018).Article 

Google Scholar 
Payton, J. L., Morton, S. M., Moore, J. E. & Jensen, L. A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy. J. Chem. Phys. 136, 214103 (2012).Article 
ADS 

Google Scholar 
Payton, J. L., Morton, S. M., Moore, J. E. & Jensen, L. A hybrid atomistic electrodynamics — quantum mechanical approach for simulating surface-enhanced Raman scattering. Acc. Chem. Res. 47, 88–99 (2014).Article 

Google Scholar 
Hu, Z., Chulhai, D. V. & Jensen, L. Simulating surface-enhanced hyper-Raman scattering using atomistic electrodynamics-quantum mechanical models. J. Chem. Theory Comput. 12, 5968–5978 (2016).Article 

Google Scholar 
Liu, P., Chulhai, D. V. & Jensen, L. Single-molecule imaging using atomistic near-field tip-enhanced Raman spectroscopy. ACS Nano 11, 5094–5102 (2017).Article 

Google Scholar 
Chen, X., Liu, P., Hu, Z. & Jensen, L. High-resolution tip-enhanced Raman scattering probes sub-molecular density changes. Nat. Commun. 10, 2567 (2019). This research article introduces a theory adopting the concept of distributed polarizability density (namely, locally integrated Raman polarizability density (LIRPD)) to show that single-molecule TERS images can be explained by local sub-molecular density changes induced by extremely confined near-field interaction, and that these determine the obtainable TERS resolution and affect the Raman selection rules.Article 
ADS 

Google Scholar 
Schmidt, S. et al. Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy. Opt. Express 24, 4128–4142 (2016).Article 
ADS 

Google Scholar 
Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).Article 

Google Scholar 
Latorre, F. et al. Spatial resolution of tip-enhanced Raman spectroscopy — DFT assessment of the chemical effect. Nanoscale 8, 10229–10239 (2016).Article 
ADS 

Google Scholar 
Rodriguez, R. D. et al. Chemical enhancement vs molecule–substrate geometry in plasmon-enhanced spectroscopy. ACS Photonics 8, 2243–2255 (2021).Article 

Google Scholar 
Fiederling, K., Kupfer, S. & Gräfe, S. Are charged tips driving TERS-resolution? A full quantum chemical approach. J. Chem. Phys. 154, 034106 (2021).Article 
ADS 

Google Scholar 
Fiederling, K. et al. The chemical effect goes resonant — a full quantum mechanical approach on TERS. Nanoscale 12, 6346–6359 (2020). This research article presents a theoretical study of a tin(II) phthalocyanine molecule in the presence of a single silver atom utilizing a full quantum mechanical description to reveal unique non-resonant and resonant chemical tip–molecule interactions, and the research also demonstrates that these lead to alter TERS spectra and contribute to subnanometre TERS resolution.Article 

Google Scholar 
Li, J., Li, X., Zhai, H.-J. & Wang, L.-S. Au20: a tetrahedral cluster. Science 299, 864–867 (2003).Article 
ADS 

Google Scholar 
Zhao, Jensen, L. & Schatz, G. C. Pyridine–Ag20 cluster: a model system for studying surface-enhanced Raman scattering. J. Am. Chem. Soc. 128, 2911–2919 (2006).Article 

Google Scholar 
Duan, S. et al. Theoretical modeling of plasmon-enhanced Raman images of a single molecule with subnanometer resolution. J. Am. Chem. Soc. 137, 9515–9518 (2015).Article 

Google Scholar 
Duan, S., Tian, G. & Luo, Y. Theory for modeling of high resolution resonant and nonresonant Raman images. J. Chem. Theory Comput. 12, 4986–4995 (2016).Article 

Google Scholar 
Duan, S., Xie, Z., Tian, G. & Luo, Y. Effects of plasmon modes on resonant Raman images of a single molecule. J. Phys. Chem. Lett. 11, 407–411 (2020).Article 

Google Scholar 
Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).Article 
ADS 

Google Scholar 
Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).Article 
ADS 

Google Scholar 
Lin, Q. et al. Optical suppression of energy barriers in single molecule-metal binding. Sci. Adv. 8, eabp9285 (2022).Article 
ADS 

Google Scholar 
Griffiths, J. et al. Resolving sub-Angstrom ambient motion through reconstruction from vibrational spectra. Nat. Commun. 12, 6759 (2021).Article 
ADS 

Google Scholar 
Fiederling, K. et al. A full quantum mechanical approach assessing the chemical and electromagnetic effect in TERS. ACS Nano 17, 13137–13146 (2023).Article 

Google Scholar 
Zhang, Y., Dong, Z.-C. & Aizpurua, J. Theoretical treatment of single-molecule scanning Raman picoscopy in strongly inhomogeneous near fields. J. Raman Spectrosc. 52, 296–309 (2021). This paper introduces a simplified calculation procedure to calculate inhomogeneous field-enhanced Raman spectra from a single molecule.Article 
ADS 

Google Scholar 
Giovannini, T. et al. Do we really need quantum mechanics to describe plasmonic properties of metal nanostructures? ACS Photonics 9, 3025–3034 (2022).Article 

Google Scholar 
Bursi, L., Calzolari, A., Corni, S. & Molinari, E. Quantifying the plasmonic character of optical excitations in nanostructures. ACS Photonics 3, 520–525 (2016).Article 

Google Scholar 
Ropers, C. et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett. 7, 2784–2788 (2007).Article 
ADS 

Google Scholar 
Berweger, S., Atkin, J. M., Olmon, R. L. & Raschke, M. Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J. Phys. Chem. Lett. 1, 3427–3432 (2010).Article 

Google Scholar 
Umakoshi, T., Saito, Y. & Verma, P. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. Nanoscale 8, 5634–5640 (2016).Article 
ADS 

Google Scholar 
Lee, D. Y. et al. Adaptive tip-enhanced nano-spectroscopy. Nat. Commun. 12, 3465 (2021).Article 
ADS 

Google Scholar 
Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).Article 
ADS 

Google Scholar 
Kazemi-Zanjani, N., Vedraine, S. & Lagugne-Labarthet, F. Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light. Opt. Express 21, 25271–25276 (2013).Article 
ADS 

Google Scholar 
Mueller, N. S., Juergensen, S., Höflich, K., Reich, S. & Kusch, P. Excitation-tunable tip-enhanced Raman spectroscopy. J. Phys. Chem. C 122, 28273–28279 (2018).Article 

Google Scholar 
Glebov, A. L. et al. Volume Bragg gratings as ultra-narrow and multiband optical filters. in Proc. SPIE. 8428, Micro-Optics 2012 84280C (2012).Rapaport, A. et al. Very low frequency Stokes and anti‐Stokes Raman spectra accessible with a single multichannel spectrograph and volume Bragg grating optical filters. AIP Conf. Proc. 1267, 808–809 (2010).Article 
ADS 

Google Scholar 
Yano, T.-A., Ichimura, T., Kuwahara, S., Verma, P. & Kawata, S. Subnanometric stabilization of plasmon-enhanced optical microscopy. Nanotechnology 23, 205503 (2012).Article 
ADS 

Google Scholar 
Yano, T.-A., Tsuchimoto, Y., Mochizuki, M., Hayashi, T. & Hara, M. Laser scanning-assisted tip-enhanced optical microscopy for robust optical nanospectroscopy. Appl. Spectrosc. 70, 1239–1243 (2016).Article 
ADS 

Google Scholar 
Kato, R., Moriyama, T., Umakoshi, T., Yano, T.-A. & Verma, P. Ultrastable tip-enhanced hyperspectral optical nanoimaging for defect analysis of large-sized WS2 layers. Sci. Adv. 8, eabo4021 (2022).Article 

Google Scholar 
Hayazawa, N., Furusawa, K. & Kawata, S. Nanometric locking of the tight focus for optical microscopy and tip-enhanced microscopy. Nanotechnology 23, 465203 (2012).Article 
ADS 

Google Scholar 
Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).Article 
ADS 

Google Scholar 
Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982).Article 
ADS 

Google Scholar 
Cappella, B. & Dietler, G. Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–104 (1999).Article 
ADS 

Google Scholar 
Karrai, K. & Tiemann, I. Interfacial shear force microscopy. Phys. Rev. B 62, 13174–13181 (2000).Article 
ADS 

Google Scholar 
Hansma, P. K. et al. Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64, 1738–1740 (1994).Article 
ADS 

Google Scholar 
Dufrêne, Y. F. et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 12, 295–307 (2017).Article 
ADS 

Google Scholar 
Xu, D., Liang, B., Xu, Y. & Liu, M. Recent advances in tip-enhanced Raman spectroscopy probe designs. Nano Res. 16, 5555–5571 (2023).Article 
ADS 

Google Scholar 
Pettinger, B., Picardi, G., Schuster, R. & Ertl, G. Surface enhanced Raman spectroscopy: towards single molecule spectroscopy. Electrochemistry 68, 942–949 (2000).Article 

Google Scholar 
Yang, B., Kazuma, E., Yokota, Y. & Kim, Y. Fabrication of sharp gold tips by three-electrode electrochemical etching with high controllability and reproducibility. J. Phys. Chem. C 122, 16950–16955 (2018).Article 

Google Scholar 
Taguchi, A., Yu, J., Verma, P. & Kawata, S. Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy. Nanoscale 7, 17424–17433 (2015). In this article, the authors theoretically and experimentally investigate the influence of multiple metal grains on the electromagnetic field enhancement.Article 
ADS 

Google Scholar 
Vasconcelos, T. L. et al. Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes. ACS Nano 9, 6297–6304 (2015).Article 

Google Scholar 
Vasconcelos, T. L. et al. Plasmon-tunable tip pyramids: monopole nanoantennas for near-field scanning optical microscopy. Adv. Optical Mater. 6, 1800528 (2018).Article 

Google Scholar 
Carnegie, C. et al. Room-temperature optical picocavities below 1 nm3 accessing single-atom geometries. J. Phys. Chem. Lett. 9, 7146–7151 (2018). This research article demonstrates the chemistry and dynamics of a single gold adatom, distinguishing atom dynamics in real time, to provide insights into the stability of picocavities under ambient conditions.Article 

Google Scholar 
Huang, Y.-P. et al. Shell-isolated tip-enhanced Raman and fluorescence spectroscopy. Angew. Chem. Int. Ed. 57, 7523–7527 (2018).Article 

Google Scholar 
Martín Sabanés, N., Driessen, L. M. A. & Domke, K. F. Versatile side-illumination geometry for tip-enhanced Raman spectroscopy at solid/liquid interfaces. Anal. Chem. 88, 7108–7114 (2016).Article 

Google Scholar 
Yokota, Y. et al. Systematic assessment of benzenethiol self-assembled monolayers on Au(111) as a standard sample for electrochemical tip-enhanced Raman spectroscopy. J. Phys. Chem. C 123, 2953–2963 (2019).Article 

Google Scholar 
Chen, X., Goubert, G., Jiang, S. & Van Duyne, R. P. Electrochemical STM tip-enhanced Raman spectroscopy study of electron transfer reactions of covalently tethered chromophores on Au(111). J. Phys. Chem. C 122, 11586–11590 (2018).Article 

Google Scholar 
Kumar, N., Wondergem, C. S., Wain, A. J. & Weckhuysen, B. M. In situ nanoscale investigation of catalytic reactions in the liquid phase using zirconia-protected tip-enhanced Raman spectroscopy probes. J. Phys. Chem. Lett. 10, 1669–1675 (2019).Article 

Google Scholar 
Zeng, Z.-C. et al. Electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 11928–11931 (2015).Article 

Google Scholar 
Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Phys. 10, 181–188 (2012).Article 
ADS 

Google Scholar 
Kurouski, D., Mattei, M. & Van Duyne, R. Probing redox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano Lett. 15, 7956–7962 (2015).Article 
ADS 

Google Scholar 
Zhang, Z., Deckert-Gaudig, T., Singh, P. & Deckert, V. Single molecule level plasmonic catalysis — a dilution study of p-nitrothiophenol on gold dimers. Chem. Commun. 51, 3069–3072 (2015).Article 

Google Scholar 
Zhang, Z., Richard-Lacroix, M. & Deckert, V. Plasmon induced polymerization using a TERS approach: a platform for nanostructured 2D/1D material production. Faraday Discuss. 205, 213–226 (2017).Article 
ADS 

Google Scholar 
Szczerbiński, J., Metternich, J. B., Goubert, G. & Zenobi, R. How peptides dissociate in plasmonic hot spots. Small 16, 1905197 (2020).Article 

Google Scholar 
Veres, M., Füle, M., Tóth, S., Koós, M. & Pócsik, I. Surface enhanced Raman scattering (SERS) investigation of amorphous carbon. Diam. Relat. Mater. 13, 1412–1415 (2004).Article 
ADS 

Google Scholar 
Yao, X. et al. Targeted suppression of peptide degradation in Ag-based surface-enhanced Raman spectra by depletion of hot carriers. Small 18, 2205080 (2022).Article 

Google Scholar 
Meng, L., Yang, Z., Chen, J. & Sun, M. Effect of electric field gradient on sub-nanometer spatial resolution of tip-enhanced Raman spectroscopy. Sci. Rep. 5, 9240 (2015).Article 
ADS 

Google Scholar 
Sun, M., Zhang, Z., Chen, L., Sheng, S. & Xu, H. Plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy. Adv. Optical Mater. 2, 74–80 (2014).Article 

Google Scholar 
Cao, Y. et al. Plasmonic gradient and plexcitonic effects in single-molecule tip-enhanced (resonance) Raman spectroscopy. J. Phys. Chem. C 127, 476–489 (2023).Article 

Google Scholar 
Poliani, E. et al. Breakdown of far-field Raman selection rules by light–plasmon coupling demonstrated by tip-enhanced Raman scattering. J. Phys. Chem. Lett. 8, 5462–5471 (2017).Article 

Google Scholar 
Deckert-Gaudig, T., Rauls, E. & Deckert, V. Aromatic amino acid monolayers sandwiched between gold and silver: a combined tip-enhanced Raman and theoretical approach. J. Phys. Chem. C 114, 7412–7420 (2010).Article 

Google Scholar 
Kurouski, D., Postiglione, T., Deckert-Gaudig, T., Deckert, V. & Lednev, I. K. Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens. Analyst 138, 1665–1673 (2013).Article 
ADS 

Google Scholar 
Liu, S., Hammud, A., Wolf, M. & Kumagai, T. Atomic point contact Raman spectroscopy of a Si(111)-7 × 7 surface. Nano Lett. 21, 4057–4061 (2021).Article 
ADS 

Google Scholar 
Yang, B. et al. Chemical enhancement and quenching in single-molecule tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 62, e202218799 (2023).Article 

Google Scholar 
Guo, S., Popp, J. & Bocklitz, T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning-based modeling. Nat. Protoc. 16, 5426–5459 (2021).Article 

Google Scholar 
Gautam, R., Vanga, S., Ariese, F. & Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2, 8 (2015).Article 

Google Scholar 
Su, W., Kumar, N., Krayev, A. & Chaigneau, M. In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale. Nat. Commun. 9, 2891 (2018). This work introduces multi-parameter microscopy to measure local electronic properties in situ by KPFM.Article 
ADS 

Google Scholar 
Deckert-Gaudig, T., Pichot, V., Spitzer, D. & Deckert, V. High-resolution Raman spectroscopy for the nanostructural characterization of explosive nanodiamond precursors. ChemPhysChem 18, 175–178 (2017).Article 

Google Scholar 
Dou, T., Li, Z., Zhang, J., Evilevitch, A. & Kurouski, D. Nanoscale structural characterization of individual viral particles using atomic force microscopy infrared spectroscopy (AFM-IR) and tip-enhanced Raman spectroscopy (TERS). Anal. Chem. 92, 11297–11304 (2020).Article 

Google Scholar 
Hermelink, A. et al. Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy. Analyst 142, 1342–1349 (2017).Article 
ADS 

Google Scholar 
Huang, S.-C. et al. Electrochemical tip-enhanced Raman spectroscopy: an in situ nanospectroscopy for electrochemistry. Annu. Rev. Phys. Chem. 72, 213–234 (2021). This research article provides a review on electrochemical TERS.Article 

Google Scholar 
Yokota, Y., Hong, M., Hayazawa, N. & Kim, Y. Electrochemical tip-enhanced Raman spectroscopy for microscopic studies of electrochemical interfaces. Surf. Sci. Rep. 77, 100576 (2022).Article 

Google Scholar 
Pfisterer, J. H. K. & Domke, K. F. Unfolding the versatile potential of EC-TERS for electrocatalysis. Curr. Opin. Electrochem. 8, 96–102 (2018).Article 

Google Scholar 
Martín Sabanés, N., Ohto, T., Andrienko, D., Nagata, Y. & Domke, K. F. Electrochemical TERS elucidates potential-induced molecular reorientation of adenine/Au(111). Angew. Chem. Int. Ed. 56, 9796–9801 (2017).Article 

Google Scholar 
Fiocco, A. et al. Electrochemical tip-enhanced Raman spectroscopy for the elucidation of complex electrochemical reactions. Anal. Chem. 96, 2791–2798 (2024).
Google Scholar 
Smithe, K. K. H. et al. Nanoscale heterogeneities in monolayer MoSe2 revealed by correlated scanning probe microscopy and tip-enhanced Raman spectroscopy. ACS Appl. Nano Mater. 1, 572–579 (2018).Article 

Google Scholar 
Bonhommeau, S., Cooney, G. S. & Huang, Y. Nanoscale chemical characterization of biomolecules using tip-enhanced Raman spectroscopy. Chem. Soc. Rev. 51, 2416–2430 (2022). This review article focuses specifically on TERS applications related to biomatter, and it critically discusses challenges related to this field.Article 

Google Scholar 
Talaga, D. et al. PIP2 phospholipid-induced aggregation of tau filaments probed by tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 57, 15738–15742 (2018).Article 

Google Scholar 
Lipiec, E. et al. Nanoscale hyperspectral imaging of amyloid secondary structures in liquid. Angew. Chem. Int. Ed. 60, 4545–4550 (2021). This recent TERS study comprises the successful integration of liquid TERS for probing the secondary structure of amyloid fibrils in situ.Article 

Google Scholar 
Wood, B. R. et al. Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte. Nano Lett. 11, 1868–1873 (2011).Article 
ADS 

Google Scholar 
Mrđenović, D., Ge, W., Kumar, N. & Zenobi, R. Nanoscale chemical imaging of human cell membranes using tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 61, e202210288 (2022).Article 

Google Scholar 
Tabatabaei, M., Caetano, F. A., Pashee, F., Ferguson, S. S. G. & Lagugné-Labarthet, F. Tip-enhanced Raman spectroscopy of amyloid β at neuronal spines. Analyst 142, 4415–4421 (2017).Article 
ADS 

Google Scholar 
Stepanenko, T. et al. Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) in label-free characterization of erythrocyte membranes and extracellular vesicles at the nano-scale and molecular level. Analyst 149, 778–788 (2024).Article 
ADS 

Google Scholar 
Alexander, K. D. & Schultz, Z. D. Tip-enhanced Raman detection of antibody conjugated nanoparticles on cellular membranes. Anal. Chem. 84, 7408–7414 (2012).Article 

Google Scholar 
Xiao, L., Wang, H. & Schultz, Z. D. Selective detection of RGD-integrin binding in cancer cells using tip enhanced Raman scattering microscopy. Anal. Chem. 88, 6547–6553 (2016).Article 

Google Scholar 
Domke, K., Zhang, D. & Pettinger, B. Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au (111). J. Am. Chem. Soc. 129, 6708–6709 (2007).Article 

Google Scholar 
Watanabe, H., Ishida, Y., Hayazawa, N., Inouye, Y. & Kawata, S. Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule. Phys. Rev. B 69, 155418 (2004).Article 
ADS 

Google Scholar 
Bailo, E. & Deckert, V. Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew. Chem. Int. Ed. 47, 1658–1661 (2008).Article 

Google Scholar 
Lin, X. et al. Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering. Preprint at https://doi.org/10.48550/arXiv.1604.06598 (2016).Hennemann, L. E., Meixner, A. J. & Zhang, D. Surface- and tip-enhanced Raman spectroscopy of DNA. Spectroscopy 24, 119–124 (2010).Article 

Google Scholar 
Treffer, R., Lin, X.-M., Bailo, E., Deckert-Gaudig, T. & Deckert, V. Distinction of nucleobases — a tip-enhanced Raman spectroscopy approach. Beilstein J. Nanotechnol. 2, 628–637 (2011).Article 

Google Scholar 
Najjar, S. et al. Tip-enhanced Raman spectroscopy of combed double-stranded DNA bundles. J. Phys. Chem. C 118, 1174–1181 (2013).Article 

Google Scholar 
Zhang, R. et al. Distinguishing individual DNA bases in a network by non-resonant tip-enhanced Raman scattering. Angew. Chem. Int. Ed. 56, 5561–5564 (2017).Article 

Google Scholar 
He, Z. et al. Tip-enhanced Raman imaging of single-stranded DNA with single base resolution. J. Am. Chem. Soc. 141, 753–757 (2019). This TERS study proves subnanometre resolution under ambient conditions by direct nucleic acid sequencing of a phage ssDNA at a step size of 0.5 nm.Article 

Google Scholar 
He, Z. et al. Resolving the sequence of RNA strands by tip-enhanced Raman spectroscopy. ACS Photonics 8, 424–430 (2021).Article 

Google Scholar 
Deckert, V. et al. Laser spectroscopic technique for direct identification of a single virus I: FASTER CARS. Proc. Natl Acad. Sci. USA 117, 27820–27824 (2020).Article 
ADS 

Google Scholar 
Olschewski, K. et al. A manual and an automatic TERS based virus discrimination. Nanoscale 7, 4545–4552 (2015).Article 
ADS 

Google Scholar 
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).Article 
ADS 

Google Scholar 
Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).Article 
ADS 

Google Scholar 
Malard, L. M. et al. Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS. Phys. Chem. Chem. Phys. 23, 23428–23444 (2021).Article 

Google Scholar 
Rahaman, M. et al. Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy. Nano Lett. 17, 6027–6033 (2017).Article 
ADS 

Google Scholar 
Vantasin, S. et al. Tip-enhanced Raman scattering of the local nanostructure of epitaxial graphene grown on 4H-SiC (000\(\bar{1}\)). J. Phys. Chem. C 118, 25809–25815 (2014).Article 

Google Scholar 
Su, W., Kumar, N., Mignuzzi, S., Crain, J. & Roy, D. Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy. Nanoscale 8, 10564–10569 (2016).Article 
ADS 

Google Scholar 
Kato, R., Umakoshi, T., Sam, R. T. & Verma, P. Probing nanoscale defects and wrinkles in MoS2 by tip-enhanced Raman spectroscopic imaging. Appl. Phys. Lett. 114, 073105 (2019).Article 
ADS 

Google Scholar 
Huang, T.-X. et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nat. Commun. 10, 5544 (2019). This research article demonstrates how TERS is used to probe the unique electronic property of defects in MoS2.Article 
ADS 

Google Scholar 
Beams, R., Cançado, L. G., Jorio, A., Vamivakas, A. N. & Novotny, L. Tip-enhanced Raman mapping of local strain in graphene. Nanotechnology 26, 175702 (2015).Article 
ADS 

Google Scholar 
Cançado, L. G., Beams, R., Jorio, A. & Novotny, L. Theory of spatial coherence in near-field Raman scattering. Phys. Rev. X 4, 031054 (2014).
Google Scholar 
Publio, B. C. et al. Inclusion of the sample-tip interaction term in the theory of tip-enhanced Raman spectroscopy. Phys. Rev. B 105, 235414 (2022).Article 
ADS 

Google Scholar 
Beams, R., Cançado, L. G., Oh, S.-H., Jorio, A. & Novotny, L. Spatial coherence in near-field Raman scattering. Phys. Rev. Lett. 113, 186101 (2014).Article 
ADS 

Google Scholar 
Rabelo, C. et al. Linkage between micro- and nano-Raman spectroscopy of defects in graphene. Phys. Rev. Appl. 14, 024056 (2020).Article 
ADS 

Google Scholar 
Alencar, R. S. et al. Probing spatial phonon correlation length in post-transition metal monochalcogenide gas using tip-enhanced Raman spectroscopy. Nano Lett. 19, 7357–7364 (2019).Article 
ADS 

Google Scholar 
Nadas, R. B. et al. Spatially coherent tip-enhanced Raman spectroscopy measurements of electron–phonon interaction in a graphene device. Nano Lett. 23, 8827–8832 (2023).Article 
ADS 

Google Scholar 
Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).Article 
ADS 

Google Scholar 
Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008).Article 

Google Scholar 
Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).Article 
ADS 

Google Scholar 
Gadelha, A. C., Vasconcelos, T. L., Cançado, L. G. & Jorio, A. Nano-optical imaging of in-plane homojunctions in graphene and MoS2 van der Waals heterostructures on talc and SiO2. J. Phys. Chem. Lett. 12, 7625–7631 (2021).Article 

Google Scholar 
Lee, K. S. et al. MicrobioRaman: an open-access web repository for microbiological Raman spectroscopy data. Nat. Microbiol. 9, 1152–1156 (2024).Article 

Google Scholar 
Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).Article 
ADS 

Google Scholar 
Stanciu, C., Sackrow, M. & Meixner, A. J. High NA particle- and tip-enhanced nanoscale Raman spectroscopy with a parabolic-mirror microscope. J. Microsc. 229, 247–253 (2008).Article 
MathSciNet 

Google Scholar 
Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).Article 
ADS 

Google Scholar 
Gramotnev, D. K. & Bozhevolnyi, S. I. Nanofocusing of electromagnetic radiation. Nat. Photonics 8, 13–22 (2014). This review article provides an overview on the physical principles, developments and applications of nanofocusing in plasmonic nanostructures.Article 
ADS 

Google Scholar 
Lindquist, N. C., Nagpal, P., Lesuffleur, A., Norris, D. J. & Oh, S.-H. Three-dimensional plasmonic nanofocusing. Nano Lett. 10, 1369–1373 (2010).Article 
ADS 

Google Scholar 
Taguchi, K., Umakoshi, T., Inoue, S. & Verma, P. Broadband plasmon nanofocusing: comprehensive study of broadband nanoscale light source. J. Phys. Chem. C 125, 6378–6386 (2021).Article 

Google Scholar 
Hampson, K. M. et al. Adaptive optics for high-resolution imaging. Nat. Rev. Methods Primers 1, 68 (2021).Article 

Google Scholar 
Umakoshi, T., Kawashima, K., Moriyama, T., Kato, R. & Verma, P. Tip-enhanced Raman spectroscopy with amplitude-controlled tapping-mode AFM. Sci. Rep. 12, 12776 (2022).Article 
ADS 

Google Scholar 
Bartolomeo, G. L., Zhang, Y., Kumar, N. & Zenobi, R. Molecular perturbation effects in AFM-based tip-enhanced Raman spectroscopy: contact versus tapping mode. Anal. Chem. 93, 15358–15364 (2021).Article 

Google Scholar 

Hot Topics

Related Articles