Employing antagonistic C-X-C motif chemokine receptor 4 antagonistic peptide functionalized NaGdF4 nanodots for magnetic resonance imaging-guided biotherapy of breast cancer

Breast Cancer Association Consortium. Breast cancer risk genes—Association analysis in more than 113,000 women. N. EngI. J. 384, 428–439 (2021).Article 

Google Scholar 
Korde, L. A., Somerfield, M. R. & Hershman, D. L. Use of immune checkpoint inhibitor pembrolizumab in the treatment of high-risk, early-stage triple-negative breast cancer: ASCO guideline rapid recommendation update. JCO 40, 1696–1698 (2022).Article 

Google Scholar 
Moy, B., Rumble, R. B. & Carey, L. A. Chemotherapy and targeted therapy for endocrine-pretreated or hormone receptor-negative metastatic breast cancer: ASCO guideline rapid recommendation update. JCO 41, 1318–1320 (2023).Article 
CAS 

Google Scholar 
Rizzo, A., Cusmai, A., Acquafredda, S., Rinaldi, L. & Palmiotti, G. Ladiratuzumab vedotin for metastatic triple negative cancer: Preliminary results, key challenges, and clinical potential. Expert Opin. Investig. Drugs 31, 495–498 (2022).Article 
CAS 
PubMed 

Google Scholar 
Guven, D. C. et al. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front. Mol. Biosci. 9, 2296–2889 (2022).Article 

Google Scholar 
Rizzo, A. et al. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: The MOUSEION-05 study. Cancer Immunol. Immunother. 72, 1381–1394 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer. N. EngI. J. 363, 1938–1948 (2010).Article 
CAS 

Google Scholar 
Li, S. D. & Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 5, 496–504 (2008).Article 
CAS 
PubMed 

Google Scholar 
Bertrand, N., Wu, J., Xu, X. Y., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).Article 
CAS 
PubMed 

Google Scholar 
Shi, J. J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zhu, G. H., Gray, A. B. C. & Patra, H. K. Nanomedicine: Controlling nanoparticle clearance for translational success. Trends Pharmacol. Sci. 43, 709–711 (2022).Article 
CAS 
PubMed 

Google Scholar 
Mosleh-Shirazi, S., Abbasi, M., Shafiee, M., Kasaee, S. R. & Amani, A. M. Renal clearable nanoparticles: An expanding horizon for improving biomedical imaging and cancer therapy. Mater. Today Commun. 26, 102064 (2021).Article 
CAS 

Google Scholar 
Xu, M. et al. Size-dependent in vivo transport of nanoparticles: Implications for delivery, targeting, and clearance. ACS Nano 17, 20825–20849 (2023).Article 
PubMed 

Google Scholar 
Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M. & Rizzolio, F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 25, 112 (2020).Article 
CAS 

Google Scholar 
Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Harish, V. et al. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials 12, 457 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ouyang, J. et al. Minimally invasive nanomedicine: Nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem. Soc. Rev. 51, 4996–5041 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, T., Lu, X. M., Zhang, M. R., Hu, K. & Li, Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact. Mater. 11, 268–282 (2022).CAS 
PubMed 

Google Scholar 
Overchuk, M., Weersink, R. A., Wilson, B. C. & Zheng, G. Photodynamic and photothermal therapies: Synergy opportunities for nanomedicine. ACS Nano 17, 7979–8003 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, S., Pan, X. T. & Liu, H. Y. Two-dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed. 59, 5890–5900 (2020).Article 
CAS 

Google Scholar 
Xu, C. et al. Metabolomics-derived biomarkers for biosafety assessment of Gd-based nanoparticle magnetic resonance imaging contrast agents. Analyst 149, 1169–1178 (2024).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zhu, G. et al. Biosafety risk assessment of gold and aluminum nanoparticles in tumor-bearing mice. APL Bioeng. 7, 016116 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stack, T. et al. Enhancing subcutaneous injection and target tissue accumulation of nanoparticles via co-administration with macropinocytosis inhibitory nanoparticles (MiNP). Nanoscale Horiz. 6, 393–400 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mills, J. A., Liu, F. F., Jarrett, T. R., Fletcher, N. L. & Thurecht, K. J. Nanoparticle based medicines: Approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomater. Sci. 10, 3029–3053 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wang, L. et al. Exploring and analyzing the systemic delivery barriers for nanoparticles. Adv. Funct. Mater. 34, 2308446 (2023).Article 
PubMed 

Google Scholar 
Souri, M. et al. Towards principled design of cancer nanomedicine to accelerate clinical translation. Mater. Today Bio 13, 100208 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gustafson, H. H., Holt-Casper, D., Grainger, D. W. & Ghandehari, H. Nanoparticle uptake: The phagocyte problem. Nano Today 10, 487–510 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Verwilst, P., Park, S., Yoon, B. & Kim, J. S. Recent advances in Gd-chelate based bimodal optical/MRI contrast agents. Chem. Soc. Rev. 44, 1791–1806 (2015).Article 
CAS 
PubMed 

Google Scholar 
Botta, M. & Tei, L. Relaxivity enhancement in macromolecular and nanosized GdIII-based MRI contrast agents. Eur. J. Inorg. Chem. 2012, 1945–1960 (2012).Article 
CAS 

Google Scholar 
Lee, G. H., Chang, Y. M. & Kim, T. J. Blood-pool and targeting MRI contrast agents: From Gd-chelates to Gd-nanoparticles. Eur. J. Inorg. Chem. 2012, 1924–1933 (2012).Article 
CAS 

Google Scholar 
Knopp, M. V., Tengg-Kobligk, H. V., Floemer, F. & Schoenberg, S. O. Contrast agents for MRA: Future directions. J. Magn. Reson. Imaging 10, 314–316 (1999).Article 
CAS 
PubMed 

Google Scholar 
Yue, H., Park, J. Y., Chang, Y. M. & Lee, G. H. Ultrasmall europium, gadolinium, and dysprosium oxide nanoparticles: Polyol synthesis, properties, and biomedical imaging applications. Mini Rev. Med. Chem. 20, 1767–1780 (2020).Article 
CAS 
PubMed 

Google Scholar 
Li, X. D., Sun, Y. H., Ma, L. N., Liu, G. F. & Wang, Z. X. The renal clearable magnetic resonance imaging contrast agents: State of the art and recent advances. Molecules 25, 5072 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, F. Y., He, X. X., Zhang, J. P., Zhang, H. M. & Wang, Z. X. Employing tryptone as a general phase transfer agent to produce renal clearable nanodots for bioimaging. Small 11, 3676–3685 (2015).Article 
CAS 
PubMed 

Google Scholar 
Yan, Y. N. et al. Renal-clearable hyaluronic acid functionalized NaGdF4 nanodots with enhanced tumor accumulation. RSC Adv. 10, 13872–13878 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, C. R. et al. Ligand-size dependent water proton relaxivities in ultrasmall gadolinium oxide nanoparticles and in vivo T1 MR images in a 1.5 T MR field. Phys. Chem. Chem. Phys. 16, 19866–19873 (2014).Article 
CAS 
PubMed 

Google Scholar 
Ni, K. et al. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T1 contrast ability. Nanoscale 8, 3768–3774 (2016).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Cheng, Z. L., Thorek, D. L. J. & Tsourkas, A. Gadolinium-conjugated dendrimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent. Angew. Chem. Int. Ed. 49, 346–350 (2010).Article 
CAS 

Google Scholar 
Viger, M. L., Sankaranarayanan, J., Lux, C. D. G., Chan, M. & Almutairi, A. Collective activation of MRI agents via encapsulation and disease-triggered releas. J. Am. Chem. Soc. 135, 7847–7850 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, J. et al. Detection of kidney dysfunction through in vivo magnetic resonance imaging with renal-clearable gadolinium nanoprobes. Anal. Chem. 94, 4005–4011 (2022).Article 
CAS 
PubMed 

Google Scholar 
Chen, H. D., Li, X. D., Liu, F. Y., Zhang, H. M. & Wang, Z. X. Renal clearable peptide functionalized NaGdF4 nanodots for high-efficiency tracking orthotopic colorectal tumor in mouse. Mol. Pharm. 14, 3134–3141 (2017).Article 
CAS 
PubMed 

Google Scholar 
Jiang, Z. L. et al. Boosting vascular imaging-performance and systemic biosafety of ultra-small NaGdF4 nanoparticles via surface engineering with rationally designed novel hydrophilic block co-polymer. Small Methods 6, 2101145 (2022).Article 
CAS 

Google Scholar 
Xu, P. P. et al. Ultra-small albumin templated Gd/Ru composite nanodots for in vivo dual modal MR/thermal imaging guided photothermal therapy. Adv. Healthc. Mater. 7, 1800322 (2018).Article 

Google Scholar 
Nkandeu, D. S. et al. The involvement of a chemokine receptor antagonist CTCE-9908 and kynurenine metabolites in cancer development. Cell Biochem. Funct. 40, 608–622 (2022).Article 
CAS 
PubMed 

Google Scholar 
Buck, A. K. et al. CXCR4-targeted theranostics in oncology. Eur. J. Nucl. Med. Mol. Imaging 49, 4133–4144 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, H. L. et al. CXCR4 over-expression and survival in cancer: A system review and meta-analysis. Oncotarget 6, 5022–5040 (2014).Article 
PubMed Central 

Google Scholar 
Lippitz, B. E. Cytokine patterns in patients with cancer: A systematic review. Lancet Oncol. 14, 218–228 (2013).Article 

Google Scholar 
Song, N. et al. Advance in the role of chemokines/chemokine receptors in carcinogenesis: Focus on pancreatic cancer. Eur. J. Pharmacol. 967, 176357 (2024).Article 
CAS 
PubMed 

Google Scholar 
Liu, G. F., Chen, H. D., Yu, S. N., Li, X. D. & Wang, Z. X. CXCR4 peptide conjugated Au–Fe2O3 Nanoparticles for tumor-targeting magnetic resonance imaging. Chem. Res. Chin. Univ. 34, 584–589 (2018).Article 
CAS 

Google Scholar 
Meng, Y. L. et al. CXC chemokine receptor type 4 antagonistic gold nanorods induce specific immune responses and long-term immune memory to combat triple-negative breast cancer. ACS Appl. Mater. Interfaces 15, 18734–18746 (2023).Article 
CAS 
PubMed 

Google Scholar 
Fu, Y. et al. CXC chemokine receptor 4 antagonist functionalized renal clearable manganese-doped iron oxide nanoparticles for active-tumor-targeting magnetic resonance imaging-guided bio-photothermal therapy. ACS Appl. Bio Mater. 2, 3613–3621 (2019).Article 
CAS 
PubMed 

Google Scholar 
Bhattarai, S., Mackeyev, Y., Venkatesulu, B. P., Krishnanb, S. & Singh, P. K. CXC chemokine receptor 4 (CXCR4) targeted gold nanoparticles potently enhance radiotherapy outcomes in breast cancer. Nanoscale 13, 19056–19065 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, C. et al. Biomimetic nanovaccines potentiating dendritic cell internalization via CXCR4-mediated macropinocytosis. Adv. Healthc. Mater. 12, 2202064 (2023).Article 
CAS 

Google Scholar 
Johnson, N. J. J., Oakden, W., Stanisz, G. J., Prosser, R. S. & Veggel, F. C. J. M. V. Size-tunable, ultrasmall NaGdF4 nanoparticles: Insights into their T1 MRI contrast enhancement. Chem. Mater. 23, 3714–3722 (2011).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles