GenRCA: a user-friendly rare codon analysis tool for comprehensive evaluation of codon usage preferences based on coding sequences in genomes | BMC Bioinformatics

Bahiri-Elitzur S, Tuller T. Codon-based indices for modeling gene expression and transcript evolution. Comput Struct Biotechnol J. 2021;19:2646–63.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hershberg R, Petrov DA. Selection on codon bias. Annu Rev Genet. 2008;42:287–99.Article 
CAS 
PubMed 

Google Scholar 
Parvathy ST, Udayasuriyan V, Bhadana V. Codon usage bias. Mol Biol Rep. 2022;49:539–65.Article 
CAS 
PubMed 

Google Scholar 
Liu Y. A code within the genetic code: codon usage regulates co-translational protein folding. Cell Commun Signal. 2020;18:145.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Athey J, et al. A new and updated resource for codon usage tables. BMC Bioinf. 2017;18:391.Article 

Google Scholar 
Quax TEF, Claassens NJ, Söll D, van der Oost J. Codon bias as a means to fine-tune gene expression. Mol Cell. 2015;59:149–61.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sharp PM, Li WH. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol. 1986;24:28–38.Article 
CAS 
PubMed 

Google Scholar 
Wright F. The ‘effective number of codons’ used in a gene. Gene. 1990;87:23–9.Article 
CAS 
PubMed 

Google Scholar 
Satapathy SS, Sahoo AK, Ray SK, Ghosh TC. Codon degeneracy and amino acid abundance influence the measures of codon usage bias: improved Nc ( N̂ c ) and ENCprime ( N̂ ′ c ) measures. Genes Cells. 2017;22:277–83.Article 
CAS 
PubMed 

Google Scholar 
Roymondal U, Das S, Sahoo S. Predicting gene expression level from relative codon usage bias: an application to Escherichia coli genome. DNA Res. 2009;16:13–30.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sabi R, Tuller T. Modelling the efficiency of codon–tRNA interactions based on codon usage bias. DNA Res. 2014;21:511–26.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang Z, et al. Codon Deviation Coefficient: a novel measure for estimating codon usage bias and its statistical significance. BMC Bioinf. 2012;13:43.Article 

Google Scholar 
Supek F, Vlahoviček K. Comparison of codon usage measures and their applicability in prediction of microbial gene expressivity. BMC Bioinf. 2005;6:182.Article 

Google Scholar 
Freire-Picos MA, et al. Codon usage in Kluyveromyces lactis and in yeast cytochrome c-encoding genes. Gene. 1994;139:43–9.Article 
CAS 
PubMed 

Google Scholar 
Wan X-F, Xu D, Kleinhofs A, Zhou J. Quantitative relationship between synonymous codon usage bias and GC composition across unicellular genomes. BMC Evol Biol. 2004;4:19.Article 
PubMed 
PubMed Central 

Google Scholar 
Wan X-F, Zhou J, Xu D. CodonO: a new informatics method for measuring synonymous codon usage bias within and across genomes. Int J Gen Syst. 2006;35:109–25.Article 

Google Scholar 
Suzuki H, Saito R, Tomita M. The ‘weighted sum of relative entropy’: a new index for synonymous codon usage bias. Gene. 2004;335:19–23.Article 
CAS 
PubMed 

Google Scholar 
Gribskov M, Devereux J, Burgess RR. The codon preference plot: graphic analysis of protein coding sequences and prediction of gene expression. Nucleic Acids Res. 1984;12:539–49.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Urrutia AO, Hurst LD. Codon usage bias covaries with expression breadth and the rate of synonymous evolution in humans, but this is not evidence for selection. Genetics. 2001;159:1191–9.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sharp PM, Li WH. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15:1281–95.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 1981;151, 389–409.Ikemura T. Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. J Mol Biol. 1982;158:573–97.Article 
CAS 
PubMed 

Google Scholar 
Bourret J, Alizon S, Bravo IG. COUSIN (COdon usage similarity INdex): a normalized measure of codon usage preferences. Genome Biol Evol. 2019;11:3523–8.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bennetzen JL, Hall BD. Codon selection in yeast. J Biol Chem. 1982;257:3026–31.Article 
CAS 
PubMed 

Google Scholar 
Suzuki H, Saito R, Tomita M. Measure of synonymous codon usage diversity among genes in bacteria. BMC Bioinf. 2009;10:167.Article 

Google Scholar 
Fox JM, Erill I. Relative codon adaptation: a generic codon bias index for prediction of gene expression. DNA Res. 2010;17:185–96.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Diament A, Pinter RY, Tuller T. Three-dimensional eukaryotic genomic organization is strongly correlated with codon usage expression and function. Nat Commun. 2014;5:5876.Article 
CAS 
PubMed 

Google Scholar 
Karlin S, Mrázek J, Campbell AM. Codon usages in different gene classes of the Escherichia coli genome. Mol Microbiol. 1998;29:1341–55.Article 
CAS 
PubMed 

Google Scholar 
Reis Md. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 2004;32, 5036–5044.Anwar AM, et al. gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm. Front Mol Biosci. 2023;10:1218518.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gouy M, Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 1982;10:7055–74.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stenico M, Lloyd AT, Sharp PM. Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases. Nucleic Acids Res. 1994;22:2437–46.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alexaki A, et al. Codon and codon-pair usage tables (CoCoPUTs): facilitating genetic variation analyses and recombinant gene design. J Mol Biol. 2019;431:2434–41.Article 
CAS 
PubMed 

Google Scholar 
Kunec D, Osterrieder N. Codon pair bias is a direct consequence of dinucleotide bias. Cell Rep. 2016;14:55–67.Article 
CAS 
PubMed 

Google Scholar 
Coleman JR, et al. Virus attenuation by genome-scale changes in codon pair bias. Science. 2008;320:1784–7.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Plotkin JB, Dushoff J, Fraser HB. Detecting selection using a single genome sequence of M. tuberculosis and P. falciparum. Nature 428, 942–945 (2004).Ghaemmaghami S, et al. Global analysis of protein expression in yeast. Nature. 2003;425:737–41.Article 
CAS 
PubMed 

Google Scholar 
Baycin-Hizal D, et al. Proteomic analysis of Chinese hamster ovary cells. J Proteome Res. 2012;11:5265–76.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lu P, Vogel C, Wang R, Yao X, Marcotte EM. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol. 2007;25:117–24.Article 
CAS 
PubMed 

Google Scholar 
Schwanhäusser B, et al. Global quantification of mammalian gene expression control. Nature. 2011;473:337–42.Article 
PubMed 

Google Scholar 
Welch M, et al. Design parameters to control synthetic gene expression in Escherichia coli. PLoS ONE. 2009;4: e7002.Article 
PubMed 
PubMed Central 

Google Scholar 
Kudla G, Murray AW, Tollervey D, Plotkin JB. Coding-sequence determinants of gene expression in Escherichia coli. Science. 2009;324:255–8.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Friberg M, von Rohr P, Gonnet G. Limitations of codon adaptation index and other coding DNA-based features for prediction of protein expression inSaccharomyces cerevisiae. Yeast. 2004;21:1083–93.Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles