Identification and experimental verification of senescence-related gene signatures and molecular subtypes in idiopathic pulmonary arterial hypertension

Thenappan, T., Ormiston, M. L., Ryan, J. J. & Archer, S. L. Pulmonary arterial hypertension: Pathogenesis and clinical management. BMJ360, j5492. https://doi.org/10.1136/bmj.j5492 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Naeije, R., Richter, M. J. & Rubin, L. J. The physiological basis of pulmonary arterial hypertension. Eur. Respir. J.https://doi.org/10.1183/13993003.02334-2021 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Humbert, M. et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J.43, 3618–3731. https://doi.org/10.1093/eurheartj/ehac237 (2022).Article 
CAS 
PubMed 

Google Scholar 
Beshay, S., Sahay, S. & Humbert, M. Evaluation and management of pulmonary arterial hypertension. Respir. Med.171, 106099. https://doi.org/10.1016/j.rmed.2020.106099 (2020).Article 
PubMed 

Google Scholar 
Mohamad Kamal, N. S., Safuan, S., Shamsuddin, S. & Foroozandeh, P. Aging of the cells: Insight into cellular senescence and detection methods. Eur. J. Cell Biol.99, 151108. https://doi.org/10.1016/j.ejcb.2020.151108 (2020).Article 
CAS 
PubMed 

Google Scholar 
Salama, R., Sadaie, M., Hoare, M. & Narita, M. Cellular senescence and its effector programs. Genes Dev.28, 99–114. https://doi.org/10.1101/gad.235184.113 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Culley, M. K. & Chan, S. Y. Endothelial senescence: a new age in pulmonary hypertension. Circ. Res.130, 928–941. https://doi.org/10.1161/CIRCRESAHA.121.319815 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roger, I., Milara, J., Belhadj, N. & Cortijo, J. Senescence alterations in pulmonary hypertension. Cellshttps://doi.org/10.3390/cells10123456 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
van der Feen, D. E., Berger, R. M. F. & Bartelds, B. Converging paths of pulmonary arterial hypertension and cellular senescence. Am. J. Respir. Cell Mol. Biol.61, 11–20. https://doi.org/10.1165/rcmb.2018-0329TR (2019).Article 
PubMed 

Google Scholar 
Jia, G., Aroor, A. R., Jia, C. & Sowers, J. R. Endothelial cell senescence in aging-related vascular dysfunction. Biochim. Biophys. Acta Mol. Basis Dis.https://doi.org/10.1016/j.bbadis.2018.08.008 (1865).Article 

Google Scholar 
Culley, M. K. et al. Frataxin deficiency promotes endothelial senescence in pulmonary hypertension. J. Clin. Invest.https://doi.org/10.1172/JCI136459 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
van der Feen, D. E. et al. Cellular senescence impairs the reversibility of pulmonary arterial hypertension. Sci. Transl. Med.https://doi.org/10.1126/scitranslmed.aaw4974 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Born, E. et al. Eliminating senescent cells can promote pulmonary hypertension development and progression. Circulation147, 650–666. https://doi.org/10.1161/CIRCULATIONAHA.122.058794 (2023).Article 
CAS 
PubMed 

Google Scholar 
Rajkumar, R. et al. Genomewide RNA expression profiling in lung identifies distinct signatures in idiopathic pulmonary arterial hypertension and secondary pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol.298, H1235-1248. https://doi.org/10.1152/ajpheart.00254.2009 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mura, M., Cecchini, M. J., Joseph, M. & Granton, J. T. Osteopontin lung gene expression is a marker of disease severity in pulmonary arterial hypertension. Respirology24, 1104–1110. https://doi.org/10.1111/resp.13557 (2019).Article 
PubMed 

Google Scholar 
Tacutu, R. et al. Human ageing genomic resources: new and updated databases. Nucl. Acids Res.46, D1083–D1090. https://doi.org/10.1093/nar/gkx1042 (2018).Article 
CAS 
PubMed 

Google Scholar 
Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst.1, 417–425. https://doi.org/10.1016/j.cels.2015.12.004 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barrett, T. et al. NCBI GEO: Archive for functional genomics data sets–update. Nucl. Acids Res.41, D991-995. https://doi.org/10.1093/nar/gks1193 (2013).Article 
CAS 
PubMed 

Google Scholar 
Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb)2, 100141. https://doi.org/10.1016/j.xinn.2021.100141 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics26, 1572–1573. https://doi.org/10.1093/bioinformatics/btq170 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep.18, 248–262. https://doi.org/10.1016/j.celrep.2016.12.019 (2017).Article 
CAS 
PubMed 

Google Scholar 
Sanz, H., Valim, C., Vegas, E., Oller, J. M. & Reverter, F. SVM-RFE: Selection and visualization of the most relevant features through non-linear kernels. BMC Bioinform.19, 432. https://doi.org/10.1186/s12859-018-2451-4 (2018).Article 

Google Scholar 
Dai, P. et al. Retrospective study on the influencing factors and prediction of hospitalization expenses for chronic renal failure in China based on random forest and lasso regression. Front. Public Health9, 678276. https://doi.org/10.3389/fpubh.2021.678276 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Wu, L. et al. LASSO regression-based diagnosis of acute ST-segment elevation myocardial infarction (STEMI) on electrocardiogram (ECG). J. Clin. Med.https://doi.org/10.3390/jcm11185408 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Huang, S. et al. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom. Proteom.15, 41–51. https://doi.org/10.21873/cgp.20063 (2018).Article 
CAS 

Google Scholar 
Wu, X. et al. Genetic analysis of potential biomarkers and therapeutic targets in ferroptosis from coronary artery disease. J. Cell. Mol. Med.26, 2177–2190. https://doi.org/10.1111/jcmm.17239 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, G. et al. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucl. Acids Res.https://doi.org/10.1093/nar/gkz240 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform.9, 559. https://doi.org/10.1186/1471-2105-9-559 (2008).Article 
CAS 

Google Scholar 
Jin, H. et al. Astragaloside IV blocks monocrotaline-induced pulmonary arterial hypertension by improving inflammation and pulmonary artery remodeling. Int. J. Mol. Med.47, 595–606. https://doi.org/10.3892/ijmm.2020.4813 (2021).Article 
CAS 
PubMed 

Google Scholar 
Witkowski, J. M., Larbi, A., Le Page, A. & Fulop, T. Natural killer cells, aging, and vaccination. Interdiscip Top Gerontol Geriatr43, 18–35. https://doi.org/10.1159/000504493 (2020).Article 
PubMed 

Google Scholar 
Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol.22, 484–498. https://doi.org/10.1038/s41577-021-00646-4 (2022).Article 
CAS 
PubMed 

Google Scholar 
Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature594, 100–105. https://doi.org/10.1038/s41586-021-03547-7 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tang, X. et al. Characterization of age-related immune features after autologous NK cell infusion: Protocol for an open-label and randomized controlled trial. Front Immunol13, 940577. https://doi.org/10.3389/fimmu.2022.940577 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huan, H. B. et al. HOXB7 accelerates the malignant progression of hepatocellular carcinoma by promoting stemness and epithelial-mesenchymal transition. J. Exp. Clin. Cancer Res.36, 86. https://doi.org/10.1186/s13046-017-0559-4 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Errico, M. C., Jin, K., Sukumar, S. & Care, A. The widening sphere of influence of HOXB7 in solid tumors. Cancer Res.76, 2857–2862. https://doi.org/10.1158/0008-5472.CAN-15-3444 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Storti, P. et al. HOXB7 expression by myeloma cells regulates their pro-angiogenic properties in multiple myeloma patients. Leukemia25, 527–537. https://doi.org/10.1038/leu.2010.270 (2011).Article 
CAS 
PubMed 

Google Scholar 
Ustiyan, V. et al. FOXF1 transcription factor promotes lung morphogenesis by inducing cellular proliferation in fetal lung mesenchyme. Dev. Biol.443, 50–63. https://doi.org/10.1016/j.ydbio.2018.08.011 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Molino, Y. et al. Gene expression comparison reveals distinct basal expression of HOX members and differential TNF-induced response between brain- and spinal cord-derived microvascular endothelial cells. J. Neuroinflammation13, 290. https://doi.org/10.1186/s12974-016-0749-6 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Obradovic, M. et al. Effects of IGF-1 on the cardiovascular system. Curr. Pharm. Des.25, 3715–3725. https://doi.org/10.2174/1381612825666191106091507 (2019).Article 
CAS 
PubMed 

Google Scholar 
Yang, Q., Sun, M., Ramchandran, R. & Raj, J. U. IGF-1 signaling in neonatal hypoxia-induced pulmonary hypertension: Role of epigenetic regulation. Vascul. Pharmacol.73, 20–31. https://doi.org/10.1016/j.vph.2015.04.005 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shi, L. et al. miR-223-IGF-IR signalling in hypoxia- and load-induced right-ventricular failure: A novel therapeutic approach. Cardiovasc. Res.111, 184–193. https://doi.org/10.1093/cvr/cvw065 (2016).Article 
CAS 
PubMed 

Google Scholar 
Connolly, M. et al. miR-322-5p targets IGF-1 and is suppressed in the heart of rats with pulmonary hypertension. FEBS Open Bio8, 339–348. https://doi.org/10.1002/2211-5463.12369 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sun, M., Ramchandran, R., Chen, J., Yang, Q. & Raj, J. U. Smooth muscle insulin-like growth factor-1 mediates hypoxia-induced pulmonary hypertension in neonatal mice. Am. J. Respir. Cell Mol. Biol.55, 779–791. https://doi.org/10.1165/rcmb.2015-0388OC (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gan, Y., Ye, F. & He, X. X. The role of YWHAZ in cancer: A maze of opportunities and challenges. J. Cancer11, 2252–2264. https://doi.org/10.7150/jca.41316 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mei, J. et al. YWHAZ interacts with DAAM1 to promote cell migration in breast cancer. Cell Death Discov.7, 221. https://doi.org/10.1038/s41420-021-00609-7 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gong, Y., Wei, Z. & Liu, J. MiRNA-1225 inhibits osteosarcoma tumor growth and progression by targeting YWHAZ. Onco Targets Ther14, 15–27. https://doi.org/10.2147/OTT.S282485 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Guo, F. et al. miR-375-3p/YWHAZ/beta-catenin axis regulates migration, invasion, EMT in gastric cancer cells. Clin. Exp. Pharmacol. Physiol.46, 144–152. https://doi.org/10.1111/1440-1681.13047 (2019).Article 
CAS 
PubMed 

Google Scholar 
Xie, J. et al. ITGB1 drives hepatocellular carcinoma progression by modulating cell cycle process through PXN/YWHAZ/AKT Pathways. Front. Cell Dev. Biol.9, 711149. https://doi.org/10.3389/fcell.2021.711149 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, T. et al. Integrated bioinformatic analysis reveals YWHAB as a novel diagnostic biomarker for idiopathic pulmonary arterial hypertension. J. Cell Physiol.234, 6449–6462. https://doi.org/10.1002/jcp.27381 (2019).Article 
CAS 
PubMed 

Google Scholar 
Shi, J. et al. YWHAZ promotes ovarian cancer metastasis by modulating glycolysis. Oncol. Rep.41, 1101–1112. https://doi.org/10.3892/or.2018.6920 (2019).Article 
CAS 
PubMed 

Google Scholar 
Guo, F. et al. Anticancer effect of YWHAZ silencing via inducing apoptosis and autophagy in gastric cancer cells. Neoplasma65, 693–700. https://doi.org/10.4149/neo_2018_170922N603 (2018).Article 
CAS 
PubMed 

Google Scholar 
Cai, H. et al. Dihydroartemisinin attenuates hypoxia-induced pulmonary hypertension through the ELAVL2/miR-503/PI3K/AKT axis. J. Cardiovasc. Pharmacol.80, 95–109. https://doi.org/10.1097/FJC.0000000000001271 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zuo, W. et al. Luteolin ameliorates experimental pulmonary arterial hypertension via suppressing hippo-YAP/PI3K/AKT signaling pathway. Front. Pharmacol.12, 663551. https://doi.org/10.3389/fphar.2021.663551 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kang, C. & Elledge, S. J. How autophagy both activates and inhibits cellular senescence. Autophagy12, 898–899. https://doi.org/10.1080/15548627.2015.1121361 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yamamoto-Imoto, H. et al. Age-associated decline of MondoA drives cellular senescence through impaired autophagy and mitochondrial homeostasis. Cell Rep.38, 110444. https://doi.org/10.1016/j.celrep.2022.110444 (2022).Article 
CAS 
PubMed 

Google Scholar 
Evans, C. E., Cober, N. D., Dai, Z., Stewart, D. J. & Zhao, Y. Y. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur. Respir. J.https://doi.org/10.1183/13993003.03957-2020 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Saliminejad, K., Khorram Khorshid, H. R., Soleymani Fard, S. & Ghaffari, S. H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol.234, 5451–5465. https://doi.org/10.1002/jcp.27486 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y. et al. Pulmonary arterial hypertension and microRNAs–an ever-growing partnership. Arch. Med. Res.44, 483–487. https://doi.org/10.1016/j.arcmed.2013.08.003 (2013).Article 
CAS 
PubMed 

Google Scholar 
Chun, H. J., Bonnet, S. & Chan, S. Y. Translational advances in the Field of pulmonary hypertension. Translating microRNA biology in pulmonary hypertension. It will take more Than “miR” Words. Am. J. Respir. Crit. Care Med.195, 167–178. https://doi.org/10.1164/rccm.201604-0886PP (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xing, X. Q. et al. MicroRNA-214-3p regulates hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration by targeting ARHGEF12. Med. Sci. Monit.25, 5738–5746. https://doi.org/10.12659/MSM.915709 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gong, J. et al. Expression of miR-93-5p as a potential predictor of the severity of chronic thromboembolic pulmonary hypertension. Biomed. Res. Int.2021, 6634417. https://doi.org/10.1155/2021/6634417 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guo, L. et al. Differentially expressed plasma microRNAs and the potential regulatory function of Let-7b in chronic thromboembolic pulmonary hypertension. PLoS One9, e101055. https://doi.org/10.1371/journal.pone.0101055 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucl. Acids Res.51, D587–D592. https://doi.org/10.1093/nar/gkac963 (2023).Article 
CAS 
PubMed 

Google Scholar 
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci.28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucl. Acids Res.28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles